TGF-β1 upregulates microRNA-192 (miR-192) in cultured glomerular mesangial cells and in glomeruli from diabetic mice. miR-192 not only increases collagen expression by targeting the E-box repressors Zeb1/2 but also modulates other renal miRNAs, suggesting that it may be a therapeutic target for diabetic nephropathy. We evaluated the efficacy of a locked nucleic acid (LNA)-modified inhibitor of miR-192, designated LNA-anti-miR-192, in mouse models of diabetic nephropathy. LNA-anti-miR-192 significantly reduced levels of miR-192, but not miR-194, in kidneys of both normal and streptozotocin-induced diabetic mice. In the kidneys of diabetic mice, inhibition of miR-192 significantly increased Zeb1/2 and decreased gene expression of collagen, TGF-β, and fibronectin; immunostaining confirmed the downregulation of these mediators of renal fibrosis. Furthermore, LNA-anti-miR-192 attenuated proteinuria in these diabetic mice. In summary, the specific reduction of renal miR-192 decreases renal fibrosis and improves proteinuria, lending support for the possibility of an anti-miRNA-based translational approach to the treatment of diabetic nephropathy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3294315 | PMC |
http://dx.doi.org/10.1681/ASN.2011050485 | DOI Listing |
JMIR Form Res
January 2025
Hamamatsu University School of Medicine, Hamamatsu City, Chuo-ku, Japan.
Background: One method for noninvasive and simple urinary microalbumin testing is urine test strips. However, when visually assessing urine test strips, accurate assessment may be difficult due to environmental influences-such as lighting color and intensity-and the physical and psychological influences of the assessor. These complicate the formation of an objective assessment.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of Nephrology, Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), No.1882, Zhonghuan North Road, Jiaxing, 314000, Zhejiang, China.
Background: Dysfunction in podocyte mitophagy has been identified as a contributing factor to the onset and progression of diabetic nephropathy (DN), and BMAL1 plays an important role in the regulation of mitophagy. Thus, this study intended to examine the impact of BMAL1 on podocyte mitophagy in DN and elucidate its underlying mechanisms.
Materials And Methods: High D-glucose (HG)-treated MPC5 cells was used as a podocyte injury model for investigating the potential roles of BMAL1 in DN.
Chin Med
January 2025
Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: The treatment options to delay the progression of diabetic nephropathy (DN), a key contributor to chronic kidney disease (CKD), are urgently needed. Previous studies reported that traditional Chinese medicine Panax notoginseng (PNG) exerted beneficial effects on DN. However, the renoprotective effects of Notoginsenoside R2 (NR2), an active component of PNG, on DN have not been investigated.
View Article and Find Full Text PDFRen Fail
December 2025
Department of Endocrinology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China.
Background: Monocyte to high-density lipoprotein cholesterol ratio (MHR) is considered a novel marker of inflammation. However, whether MHR can predict the risk of diabetic kidney disease (DKD) remains uncertain. Our research aimed to investigate the relationship between MHR and DKD.
View Article and Find Full Text PDFRen Fail
December 2025
Guangdong Medical University, Dongguan, China.
Background: Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease globally. Recent research has identified insulin-like growth factor-binding proteins 2 (IGFBP2) and 4 (IGFBP4) as potential biomarkers for DKD. Overactivation of the complement pathway in DKD remains poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!