Na(V)1.1 is the primary voltage-gated Na(+) channel in several classes of GABAergic interneurons, and its reduced activity leads to reduced excitability and decreased GABAergic tone. Here, we show that Na(V)1.1 channels are expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus. Mice carrying a heterozygous loss of function mutation in the Scn1a gene (Scn1a(+/-)), which encodes the pore-forming α-subunit of the Na(V)1.1 channel, have longer circadian period than WT mice and lack light-induced phase shifts. In contrast, Scn1a(+/-) mice have exaggerated light-induced negative-masking behavior and normal electroretinogram, suggesting an intact retina light response. Scn1a(+/-) mice show normal light induction of c-Fos and mPer1 mRNA in ventral SCN but impaired gene expression responses in dorsal SCN. Electrical stimulation of the optic chiasm elicits reduced calcium transients and impaired ventro-dorsal communication in SCN neurons from Scn1a(+/-) mice, and this communication is barely detectable in the homozygous gene KO (Scn1a(-/-)). Enhancement of GABAergic transmission with tiagabine plus clonazepam partially rescues the effects of deletion of Na(V)1.1 on circadian period and phase shifting. Our report demonstrates that a specific voltage-gated Na(+) channel and its associated impairment of SCN interneuronal communication lead to major deficits in the function of the master circadian pacemaker. Heterozygous loss of Na(V)1.1 channels is the underlying cause for severe myoclonic epilepsy of infancy; the circadian deficits that we report may contribute to sleep disorders in severe myoclonic epilepsy of infancy patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3277539PMC
http://dx.doi.org/10.1073/pnas.1115729109DOI Listing

Publication Analysis

Top Keywords

nav11 channels
12
scn1a+/- mice
12
suprachiasmatic nucleus
8
voltage-gated na+
8
na+ channel
8
heterozygous loss
8
circadian period
8
severe myoclonic
8
myoclonic epilepsy
8
epilepsy infancy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!