The dissociation of protein ions (5-30  kDa) as a function of charge state has been explored in order to suggest the optimal charge state range for top-down sequencing. Proteins were generated under denaturing conditions and their charge states were modified via ion/ion proton transfer reactions prior to dissociation. Electron transfer dissociation (ETD) data suggested optimal sequence coverage for charge states in the m/z range from 700 to 950 while limited sequence coverage was noted when the precursor m/z was above 1000. Sequence coverage from ETD data was found to be dependent on protein size, with smaller proteins having better sequence coverage. An observed depletion in sequence-related information was mainly attributed to limited instrument (ion trap) performance (m/z range and resolution). For a combined ETD/collision-induced dissociation (CID) approach it is difficult to propose an optimal m/z range since good sequence coverage for CID is at intermediate charge states and the optimal m/z range increases with protein size. When only one charge state can be analysed in a combined ETD/CID approach, a range around 950  m/z is suggested as a starting point. Alternatively, two charge states should be explored, each optimal for either ETD or CID. Overall, these suggestions should be useful to achieve enhanced characterisation of smaller proteins/large protein fragments (generated from denaturing solutions) in minimal analysis times.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.5330DOI Listing

Publication Analysis

Top Keywords

sequence coverage
20
charge state
16
charge states
16
m/z range
16
charge
8
electron transfer
8
transfer dissociation
8
generated denaturing
8
etd data
8
protein size
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!