The Dictyostelium centrosome consists of a layered core structure surrounded by a microtubule-nucleating corona. A tight linkage through the nuclear envelope connects the cytosolic centrosome with the clustered centromeres within the nuclear matrix. At G2/M the corona dissociates, and the core structure duplicates, yielding two spindle poles. CP148 is a novel coiled coil protein of the centrosomal corona. GFP-CP148 exhibited cell cycle-dependent presence and absence at the centrosome, which correlates with dissociation of the corona in prophase and its reformation in late telophase. During telophase, GFP-CP148 formed cytosolic foci, which coalesced and joined the centrosome. This explains the hypertrophic appearance of the corona upon strong overexpression of GFP-CP148. Depletion of CP148 by RNAi caused virtual loss of the corona and disorganization of interphase microtubules. Surprisingly, formation of the mitotic spindle and astral microtubules was unaffected. Thus, microtubule nucleation complexes associate with centrosomal core components through different means during interphase and mitosis. Furthermore, CP148 RNAi caused dispersal of centromeres and altered Sun1 distribution at the nuclear envelope, suggesting a role of CP148 in the linkage between centrosomes and centromeres. Taken together, CP148 is an essential factor for the formation of the centrosomal corona, which in turn is required for centrosome/centromere linkage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11114716 | PMC |
http://dx.doi.org/10.1007/s00018-011-0904-2 | DOI Listing |
Cell Mol Life Sci
November 2012
Department of Cell Biology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Haus 26, 14476 Potsdam-Golm, Germany.
Dictyostelium centrosomes consist of a layered core structure surrounded by a microtubule-nucleating corona. At the G2/M transition, the corona dissociates and the core structure duplicates, yielding two spindle pole bodies. Finally, in telophase, the spindle poles mature into two new, complete centrosomes.
View Article and Find Full Text PDFCell Mol Life Sci
June 2012
Department of Cell Biology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Haus 26, 14476, Potsdam-Golm, Germany.
Cell Motil Cytoskeleton
November 2009
Department of Cell Biology, University of Potsdam, Potsdam-Golm, Germany.
The centrosome is the main microtubule-organizing center and constitutes the largest protein complex in a eukaryotic cell. The Dictyostelium centrosome is an established model for acentriolar centrosomes and it consists of a layered core structure surrounded by a so-called corona, which harbors microtubule nucleation complexes. We have identified 34 new centrosomal candidate proteins through mass spectrometrical analysis of the proteome of isolated Dictyostelium centrosomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!