Differential expression of microRNAs during melanoma progression: miR-200c, miR-205 and miR-211 are downregulated in melanoma and act as tumour suppressors.

Br J Cancer

MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK.

Published: January 2012

Background: The incidence of malignant melanoma is increasing faster than that for any other cancer. Histological examination of skin excision biopsies remains the standard method for melanoma diagnosis and prognosis. Significant morphological overlap between benign and malignant lesions complicates diagnosis, and tumour thickness is not always an accurate predictor of prognosis.

Methods: To identify improved molecular markers to support histological examination, we used microarray analysis of formalin-fixed and paraffin-embedded samples from different stages of melanomagenesis to identify differentially expressed microRNAs (miRNAs). Differential expression was validated by qRT-PCR, and functional studies were carried out after transfection of miRNA precursors or inhibitors into melanoma cells to modulate miRNA expression.

Results: In all, 20 miRNAs showed highly significant differential expression between benign naevi and either primary or metastatic melanomas, the majority being downregulated in melanoma, whereas only 2 miRNAs, namely miR-203 and miR-205, were differentially expressed between primary and metastatic melanomas. In functional in vitro assays, overexpression of miR-200c and miR-205 inhibited anchorage-independent colony formation and overexpression of miR-211 inhibited both anchorage-independent colony formation and invasion.

Conclusion: We have identified a series of differentially expressed miRNAs that could be useful as diagnostic or prognostic markers for melanoma and have shown that three miRNAs (namely miR-200c, miR-205 and miR-211) act as tumour suppressors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273359PMC
http://dx.doi.org/10.1038/bjc.2011.568DOI Listing

Publication Analysis

Top Keywords

differential expression
12
mir-200c mir-205
12
differentially expressed
12
mir-205 mir-211
8
downregulated melanoma
8
tumour suppressors
8
histological examination
8
primary metastatic
8
metastatic melanomas
8
inhibited anchorage-independent
8

Similar Publications

Background: The most common malignant type of kidney cancer is clear cell renal cell carcinoma (ccRCC). The expression levels of hyaluronan-mediated motility receptor (HMMR) in many tumor types are significantly elevated. HMMR is closely associated with tumor-related progression, treatment resistance, and poor prognosis, and has yet to be fully investigated in terms of its expression patterns and molecular mechanisms of action in ccRCC.

View Article and Find Full Text PDF

An integrated investigation of mitochondrial genes in COPD reveals the causal effect of NDUFS2 by regulating pulmonary macrophages.

Biol Direct

January 2025

Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.

Background: Despite the increasing body of evidence that mitochondrial activities implicate in chronic obstructive pulmonary disease (COPD), we are still far from a causal-logical and mechanistic understanding of the mitochondrial malfunctions in COPD pathogenesis.

Results: Differential expression genes (DEGs) from six publicly available bulk human lung tissue transcriptomic datasets of COPD patients were intersected with the known mitochondria-related genes from MitoCarta3.0 to obtain mitochondria-related DEGs associated with COPD (MitoDEGs).

View Article and Find Full Text PDF

Endothelial-mesenchymal transition (EndMT) is defined as an important process of cellular differentiation by which endothelial cells (ECs) are prone to lose their characteristics and transform into mesenchymal cells. During EndMT, reduced expression of endothelial adhesion molecules disrupts intercellular adhesion, triggering cytoskeletal reorganization and mesenchymal transition. Numerous studies have proved that EndMT is a multifaceted biological event driven primarily by cytokines such as TGF-β, TNF-α, and IL-1β, alongside signaling pathways like WNT, Smad, MEK-ERK, and Notch.

View Article and Find Full Text PDF

Proper differentiation of bone marrow stromal cells (BMSCs) into adipocytes is crucial for maintaining skeletal homeostasis. However, the underlying regulatory mechanisms remain incompletely understood, posing a challenge for the treatment of age-related osteopenia and osteoporosis. Here, through comprehensive gene expression analysis during BMSC differentiation into adipocytes, we identified the forkhead transcription factor Foxk2 as a key regulator of this process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!