It is now well established that G-protein coupled receptors (GPCRs) are hyper-phosphorylated following agonist occupation usually at serine and threonine residues contained on the third intracellular loop and C-terminal tail. After some 2 decades of intensive research, the nature of protein kinases involved in this process together with the signalling consequences of receptor phosphorylation has been firmly established. The major challenge that the field currently faces is placing all this information within a physiological context and determining to what extent does phosphoregulation of GPCRs impact on whole animal responses. In this chapter, we address this issue by describing how GPCR phosphorylation might vary depending on the cell type in which the receptor is expressed and how this might be employed to drive selective regulation of physiological responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-642-23274-9_5 | DOI Listing |
J Exp Med
March 2025
School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
Tissue-resident memory T cells (TRM) provide frontline protection against pathogens and emerging malignancies. Tumor-infiltrating lymphocytes (TIL) with TRM features are associated with improved clinical outcomes. However, the cellular interactions that program TRM differentiation and function are not well understood.
View Article and Find Full Text PDFProtein Sci
February 2025
Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.
The chemokine XC motif chemokine ligand 1 (XCL1) is an unusually specialized member of a conserved family of around 50 small, secreted proteins that are best known for their ability to stimulate the directional migration of cells. All chemokines adopt a very similar folded structure that binds a specific G protein-coupled receptor (GPCR), and most chemokines bind extracellular matrix glycosaminoglycans, often in a dimeric or oligomeric form. Owing in part to the lack of a disulfide bond that is conserved in all other chemokines, XCL1 interconverts between two distinct structures with distinct functions.
View Article and Find Full Text PDFAndrology
January 2025
Department of Digestion, Metabolism and Reproduction, Institute of Reproductive and Developmental Biology, Hammersmith Campus, Imperial College London, London, UK.
Luteinizing hormone (LH), along with its agonist choriongonadotropin (hCG) in humans, is the key hormone responsible for the tropic regulation of the gonadal function. LH and hCG act through their cognate receptor, the luteinizing hormone/choriongonadotropin receptor (LHCGR; more appropriately LHR in rodents lacking CG), located in the testis in Leydig cells and in the ovary in theca, luteal, and luteinizing granulosa cells. Low levels in LHCGR are also expressed in numerous extragonadal sites.
View Article and Find Full Text PDFCirc Res
January 2025
Hypertension Research Laboratory, School of Biological Sciences (R.R.M., T.Z., E.D., L.X., A.B.-W., H.A.J., M.N., M.P., K.C.L., W.Q., J.A.O.D., F.Z.M.).
Background: Fermentation of dietary fiber by the gut microbiota leads to the production of metabolites called short-chain fatty acids, which lower blood pressure and exert cardioprotective effects. Short-chain fatty acids activate host signaling responses via the functionally redundant receptors GPR41 and GPR43, which are highly expressed by immune cells. Whether and how these receptors protect against hypertension or mediate the cardioprotective effects of dietary fiber remains unknown.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
[This corrects the article DOI: 10.3389/fendo.2024.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!