Escalating problems with drug resistance continue to compromise the effectiveness of commercial antibiotics, necessitating the search for novel classes of antimicrobial agents. To circumvent problems with resistance, a multitarget single-pharmacophore approach has been employed to discover inhibitors that possess balanced activity against multiple target enzymes. In this chapter, we examine the application of computational techniques, in particular, structure-based drug design approaches, to design new dual-targeting antibacterial agents against bacterial topoisomerases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-61779-520-6_9 | DOI Listing |
Int J Biol Macromol
January 2025
Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Intratumoral drug delivery systems hold immense promise in overcoming the limitations of conventional IV chemotherapy, particularly in enhancing therapeutic efficacy and minimizing systemic side effects. In this study, we introduce a novel redox-responsive intratumoral nanogel system that combines the biocompatibility of natural polysaccharides with the tailored properties of synthetic polymers. The nanogel features a unique cross-linked architecture incorporating redox-sensitive segments, designed to leverage the elevated glutathione levels in the tumor microenvironment for controlled drug release.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 China. Electronic address:
It is imperative to investigate more cost-effective, long-lasting, efficient, and reliable non-noble metal electrocatalysts for the oxygen evolution reaction (OER) in hydrogen production via water splitting. Metal-organic complexes have been extensively researched and utilized for this purpose, yet their transformation in this process remains intriguing and underexplored. To enable a comprehensive comparison, we synthesized three types of metal-organic complexes with varying morphologies using the same raw material.
View Article and Find Full Text PDFInt J Nurs Stud
January 2025
Johns Hopkins University Center for Infectious Disease and Nursing Innovation, Baltimore, MD, USA; Johns Hopkins University School of Nursing, Baltimore, MD, USA.
Introduction: Undetectable equals untransmittable (U=U) is an education campaign promoting science that people living with human immunodeficiency virus (HIV) who maintain an undetectable viral load cannot transmit HIV to others. Researchers theorize that undetectable equals untransmittable messaging will decrease HIV stigma by reducing fears of HIV transmission and providing evidence to dismantle discriminatory policies. However, little is known about how people with HIV in South Africa interpret the results of their viral load tests, undetectable equals untransmittable messaging, or its impact on stigma.
View Article and Find Full Text PDFCell Prolif
January 2025
Department of Nursing, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.
Vasculogenic mimicry (VM) represents a novel form of angiogenesis discovered in numerous malignant tumours in recent years. Unlike traditional angiogenesis, VM facilitates tumour blood supply independently of endothelial cells by enabling tumour cells to form functional vascular networks. This phenomenon, where tumour cells replace endothelial cells to form tubular structures, plays a pivotal role in tumour growth and metastasis.
View Article and Find Full Text PDFNeuroimage
January 2025
School of information science and technology, Northwest University, Xi'an, China. Electronic address:
Macroscale neuroimaging results have revealed significant differences in the structural and functional connectivity patterns of gyri and sulci in the primate cerebral cortex. Despite these findings, understanding these differences at the molecular level has remained challenging. This study leverages a comprehensive dataset of whole-brain in situ hybridization (ISH) data from marmosets, with updates continuing through 2024, to systematically analyze cortical folding patterns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!