Background: With the rapid growth of genome sequencing projects, genome browser is becoming indispensable, not only as a visualization system but also as an interactive platform to support open data access and collaborative work. Thus a customizable genome browser framework with rich functions and flexible configuration is needed to facilitate various genome research projects.
Results: Based on next-generation web technologies, we have developed a general-purpose genome browser framework ABrowse which provides interactive browsing experience, open data access and collaborative work support. By supporting Google-map-like smooth navigation, ABrowse offers end users highly interactive browsing experience. To facilitate further data analysis, multiple data access approaches are supported for external platforms to retrieve data from ABrowse. To promote collaborative work, an online user-space is provided for end users to create, store and share comments, annotations and landmarks. For data providers, ABrowse is highly customizable and configurable. The framework provides a set of utilities to import annotation data conveniently. To build ABrowse on existing annotation databases, data providers could specify SQL statements according to database schema. And customized pages for detailed information display of annotation entries could be easily plugged in. For developers, new drawing strategies could be integrated into ABrowse for new types of annotation data. In addition, standard web service is provided for data retrieval remotely, providing underlying machine-oriented programming interface for open data access.
Conclusions: ABrowse framework is valuable for end users, data providers and developers by providing rich user functions and flexible customization approaches. The source code is published under GNU Lesser General Public License v3.0 and is accessible at http://www.abrowse.org/. To demonstrate all the features of ABrowse, a live demo for Arabidopsis thaliana genome has been built at http://arabidopsis.cbi.edu.cn/.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3265404 | PMC |
http://dx.doi.org/10.1186/1471-2105-13-2 | DOI Listing |
Genes (Basel)
December 2024
Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey.
Chronic venous insufficiency (CVI), a chronic vascular dysfunction, is a common health problem that causes serious complications such as painful varicose veins and even skin ulcers. Identifying the underlying genetic and epigenetic factors is important for improving the quality of life of individuals with CVI. In the literature, many genes, variants, and miRNAs associated with CVI have been identified through genomic and transcriptomic studies.
View Article and Find Full Text PDFBioinformatics
January 2025
European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom.
Summary: In recent years there has been a surge in prokaryotic genome assemblies, coming from both isolated organisms and environmental samples. These assemblies often include novel species that are poorly represented in reference databases creating a need for a tool that can annotate both well-described and novel taxa, and can run at scale. Here, we present mettannotator-a comprehensive, scalable Nextflow pipeline for prokaryotic genome annotation that identifies coding and non-coding regions, predicts protein functions, including antimicrobial resistance, and delineates gene clusters.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
Research Institute for Systems Biology and Medicine, Moscow, Russian Federation.
Background: Currently, synthetic genomics is a rapidly developing field. Its main tasks, such as the design of synthetic sequences and the assembly of DNA sequences from synthetic oligonucleotides, require specialized software. In this article, we present a program with a graphical interface that allows non-bioinformatics to perform the tasks needed in synthetic genomics.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Kazusa DNA Research Institute, Kazusa-Kamatari, 2-6-7, Kisarazu, Chiba 292-0818, Japan.
Hayai-Annotation, an annotation tool powered by the R-shinydashboard browser interface, implements a workflow that integrates sequence alignment using DIAMOND against UniProtKB Plants and ortholog inference using OrthoLoger. We here propose a pipeline to explore genome evolution and adaptation from a different perspective, by creating a network considering orthologs and gene ontology as nodes, with edges based on the annotation for each gene. This approach aims to improve the visualization of conserved biological processes and functions, highlight species-specific adaptations, and enhance the ability to infer the functions of uncharacterized genes by comparing edge patterns across species.
View Article and Find Full Text PDFHum Genet
January 2025
Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands.
Refractive error (RE) and myopia are complex polygenic conditions with the majority of genome-wide associated genetic variants in non-exonic regions. Given this, and the onset during childhood, gene-regulation is expected to play an important role in its pathogenesis. This prompted us to explore beyond traditional gene finding approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!