In this study, we have fabricated and characterized the silicon [Si] wire solar cells with conformal ZnO nanorod antireflection coating [ARC] grown on a Al-doped ZnO [AZO] seed layer. Vertically aligned Si wire arrays were fabricated by electrochemical etching and, the p-n junction was prepared by spin-on dopant diffusion method. Hydrothermal growth of the ZnO nanorods was followed by AZO film deposition on high aspect ratio Si microwire arrays by atomic layer deposition [ALD]. The introduction of an ALD-deposited AZO film on Si wire arrays not only helps to create the ZnO nanorod arrays, but also has a strong impact on the reduction of surface recombination. The reflectance spectra show that ZnO nanorods were used as an efficient ARC to enhance light absorption by multiple scattering. Also, from the current-voltage results, we found that the combination of the AZO film and ZnO nanorods on Si wire solar cells leads to an increased power conversion efficiency by more than 27% compared to the cells without it.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278341PMC
http://dx.doi.org/10.1186/1556-276X-7-29DOI Listing

Publication Analysis

Top Keywords

wire solar
12
solar cells
12
zno nanorod
12
zno nanorods
12
azo film
12
zno
8
nanorod antireflection
8
antireflection coating
8
al-doped zno
8
seed layer
8

Similar Publications

Novel Structures for PV Solar Cells: Fabrication of Cu/CuS-MWCNTs 1D-Hybrid Nanocomposite.

Micromachines (Basel)

October 2024

CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal.

The production of cost-effective novel materials for PV solar cells with long-term stability, high energy conversion efficiency, enhanced photon absorption, and easy electron transport has stimulated great interest in the research community over the last decades. In the presented work, Cu/CuS-MWCNTs nanocomposites were produced and analyzed in the framework of potential applications for PV solar cells. Firstly, the surface of the produced one-dimensional Cu was covered by CuS nanoflake.

View Article and Find Full Text PDF

Precision processing of monocrystalline silicon presents significant challenges due to its unique crystal structure and chemical properties. Effective modeling and simulation are essential for advancing the understanding of the manufacturing process, optimizing design, and refining production parameters to enhance product quality and performance. This review provides a comprehensive analysis of the modeling and simulation techniques applied in the precision machining of monocrystalline silicon using diamond wire sawing.

View Article and Find Full Text PDF

Thin wafers and thin wires are beneficial to the photovoltaic industry for reducing costs, increasing efficiency, and reducing the cost of electricity generation. It is a development trend in solar silicon wafer cutting. Thin wire cutting reduces the kerf between silicon wafers to less than 50 μm.

View Article and Find Full Text PDF

Enhanced H production assisted by anodic iodide oxidation using transparent tin oxide-based electrodes.

Chem Commun (Camb)

July 2024

Functional Materials for Electrochemistry and Solar energy (FunMatES) group, Energy and Environmental Chemistry Lab, Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Goa, 403726, India.

In this work, the direct use of transparent conducting oxides (TCOs) as cost-efficient anodes for the iodide oxidation reaction (IOR) is explored. Energy-saving hydrogen production assisted by the IOR is demonstrated using a hybrid water electrolysis system with FTO as the anode and Pt-wire as the cathode. The hybrid system delivers 10 mA cm at a cell voltage as low as 1.

View Article and Find Full Text PDF

Solar-driven interfacial evaporation is an emerging desalination technology that can potentially relieve the freshwater scarcity issue. To obtain high and continuous evaporation rates for all-weather, chemically engineered structural materials have been widely explored for simultaneous photothermal and electrothermal conversion. However, many previously reported fabrication processes involve poor integration and considerable energy loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!