A central goal in neuroscience is to interpret neural activation and, moreover, to do so in a way that captures universal principles by generalizing across individuals. Recent research in multivoxel pattern-based fMRI analysis has led to considerable success at decoding within individual subjects. However, the goal of being able to decode across subjects is still challenging: It has remained unclear what population-level regularities of neural representation there might be. Here, we present a novel and highly accurate solution to this problem, which decodes across subjects between eight different stimulus conditions. The key to finding this solution was questioning the seemingly obvious idea that neural decoding should work directly on neural activation patterns. On the contrary, to decode across subjects, it is beneficial to abstract away from subject-specific patterns of neural activity and, instead, to operate on the similarity relations between those patterns: Our new approach performs decoding purely within similarity space. These results demonstrate a hitherto unknown population-level regularity in neural representation and also reveal a striking convergence between our empirical findings in fMRI and discussions in the philosophy of mind addressing the problem of conceptual similarity across neural diversity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1162/jocn_a_00189 | DOI Listing |
Appl Neuropsychol Adult
January 2025
Faculty Xavier Institute of Engineering, Mahim, India.
In the fields of engineering, science, technology, and medicine, artificial intelligence (AI) has made significant advancements. In particular, the application of AI techniques in medicine, such as machine learning (ML) and deep learning (DL), is rapidly growing and offers great potential for aiding physicians in the early diagnosis of illnesses. Depression, one of the most prevalent and debilitating mental illnesses, is projected to become the leading cause of disability worldwide by 2040.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Department of Computer Science and Software Engineering, United Arab Emirates University, Al Ain, United Arab Emirates.
Background: Neuroimaging segmentation is increasingly important for diagnosing and planning treatments for neurological diseases. Manual segmentation is time-consuming, apart from being prone to human error and variability. Transformers are a promising deep learning approach for automated medical image segmentation.
View Article and Find Full Text PDFJMIR Form Res
January 2025
Department of Public Health, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, 470-1192, Japan, 81 562-93-2476, 81 562-93-3079.
Background: Estimating the prevalence of schizophrenia in the general population remains a challenge worldwide, as well as in Japan. Few studies have estimated schizophrenia prevalence in the Japanese population and have often relied on reports from hospitals and self-reported physician diagnoses or typical schizophrenia symptoms. These approaches are likely to underestimate the true prevalence owing to stigma, poor insight, or lack of access to health care among respondents.
View Article and Find Full Text PDFAnnu Rev Chem Biomol Eng
January 2025
Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden; email:
Organic mixed ionic-electronic conductors (OMIECs) could revolutionize bioelectronics by enabling seamless integration with biological systems. This review explores their role in neural biomimicry and biointerfacing, with a focus on how backbone design, sidechain optimization, and antiambipolarity impact performance. Recent advances highlight OMIECs' biocompatibility and mechanical compliance, making them ideal for bioelectronic applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!