Chemokines and their receptors are involved in the development and cancer progression. The chemokine CXCL12 interacts with its receptor, CXCR4, to promote cellular adhesion, survival, proliferation and migration. The CXCR4 gene is upregulated in several types of cancers, including skin, lung, pancreas, brain and breast tumors. In pancreatic cancer and melanoma, CXCR4 expression is regulated by DNA methylation within its promoter region. In this study we examined the role of cytosine methylation in the regulation of CXCR4 expression in breast cancer cell lines and also correlated the methylation pattern with the clinicopathological aspects of sixty-nine primary breast tumors from a cohort of Brazilian women. RT-PCR showed that the PMC-42, MCF7 and MDA-MB-436 breast tumor cell lines expressed high levels of CXCR4. Conversely, the MDA-MB-435 cell line only expressed CXCR4 after treatment with 5-Aza-CdR, which suggests that CXCR4 expression is regulated by DNA methylation. To confirm this hypothesis, a 184 bp fragment of the CXCR4 gene promoter region was cloned after sodium bisulfite DNA treatment. Sequencing data showed that cell lines that expressed CXCR4 had only 15% of methylated CpG dinucleotides, while the cell line that not have CXCR4 expression, had a high density of methylation (91%). Loss of DNA methylation in the CXCR4 promoter was detected in 67% of the breast cancer analyzed. The absence of CXCR4 methylation was associated with the tumor stage, size, histological grade, lymph node status, ESR1 methylation and CXCL12 methylation, metastasis and patient death. Kaplan-Meier curves demonstrated that patients with an unmethylated CXCR4 promoter had a poorer overall survival and disease-free survival. Furthermore, patients with both CXCL12 methylation and unmethylated CXCR4 had a shorter overall survival and disease-free survival. These findings suggest that the DNA methylation status of both CXCR4 and CXCL12 genes could be used as a biomarker for prognosis in breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3248418PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0029461PLOS

Publication Analysis

Top Keywords

cxcr4
16
breast cancer
16
cxcr4 expression
16
dna methylation
16
cell lines
12
methylation
11
cxcr4 gene
8
breast tumors
8
expression regulated
8
regulated dna
8

Similar Publications

Astragalin inhibits neuronal excitability and activates neuronal autophagy in the ACC and LH of CFA mice to alleviate inflammatory pain and pain-related emotions.

Int Immunopharmacol

January 2025

Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China. Electronic address:

Astragalin (AST), a natural flavonoid, exhibits anti-inflammatory, anti-cancer, and antioxidant properties. However, its effects and molecular mechanisms in inflammatory pain remain unclear. Therefore, this study aims to investigate the impact of AST on a Complete Freund's Adjuvant (CFA)-induced inflammatory pain mouse model and to elucidate its potential mechanisms.

View Article and Find Full Text PDF

Non-viral, high throughput genetic engineering of primary immune cells using nanostraw-mediated transfection.

Biomaterials

January 2025

Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore; NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore. Electronic address:

Transfection of proteins, mRNA, and chimeric antigen receptor (CAR) transgenes into immune cells remains a critical bottleneck in cell manufacturing. Current methods, such as viruses and bulk electroporation, are hampered by low transfection efficiency, unintended transgene integration, and significant cell perturbation. The Nanostraw Electro-actuated Transfection (NExT) technology offers a solution by using high aspect-ratio nanostraws and localized electric fields to precisely deliver biomolecules into cells with minimal disruption.

View Article and Find Full Text PDF

WBP1L is a broadly expressed transmembrane adaptor protein involved in regulating hematopoietic stem cell function and T cell development. It interacts with NEDD4-family E3 ubiquitin ligases and regulates important chemokine receptor CXCR4. Using tandem affinity purification coupled with mass spectrometry, we identified novel WBP1L interactions with the IFNγ receptor and the Cullin-RING ubiquitin ligases CRL1.

View Article and Find Full Text PDF

Immune-checkpoint-inhibitors (ICI) target key regulators of the immune system expressed by cancer cells that mask those from recognition by the immune system. They have improved the outcome for patients with various cancer types, such as melanoma. ICI-based therapy is frequently accompanied by immune-related adverse side effects (IRAEs).

View Article and Find Full Text PDF

The role of CXCL12/CXCR4/CXCR7 axis in cognitive impairment associated with neurodegenerative diseases.

Brain Behav Immun Health

February 2025

Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran.

Neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS), are characterized by progressive neuronal loss and cognitive impairment (CI). The: Cysteine-X-cysteine chemokine ligand 12(CXCL12)/CXC chemokine receptor type 4 (CXCR4)/CXC chemokine receptor type 7 (CXCR7) axis has emerged as a critical molecular pathway in the development of CI in these disorders. This review explores the role of this axis in the pathogenesis of CI across these neurodegenerative diseases, synthesizing current evidence and its implications for targeted therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!