Purpose: To describe phenotypic characteristics of two pedigrees manifesting early onset crystalline cataract with mutations in the γD-crystallin gene (CRYGD).
Methods: A detailed medical history was obtained from two Caucasian pedigrees manifesting autosomal dominant congenital cataracts. Genomic DNA was extracted from saliva (DNA Genotek). Single Nucleotide Polymorphism (SNP) based genome analysis of the larger pedigree revealed linkage to an 8.2 MB region on chromosome 2q33-q35 which encompassed the crystallin-gamma gene cluster (CRYG). Exons and flanking introns of CRYGA, CRYGB, CRYGC and CRYGD were amplified and sequenced to identify disease-causing mutations.
Results: A morphologically unique cataract with extensive refractile "crystals" scattered throughout the nucleus and perinuclear cortex was found in the probands from both pedigrees. A heterozygous C→A mutation was identified at position 109 of the coding sequence (R36S of the processed protein) in exon 2 of CRYGD and this missense mutation was found to cosegregate with the disease in the larger family; this mutation was then identified in affected individuals of pedigree 2 as well.
Conclusions: The heterozygous 109C→A CRYGD missense mutation is associated with a distinct crystalline cataract in two US Caucasian pedigrees. This confirms crystalline cataract formation with this mutation, as previously reported in sporadic childhood case from the Czech Republic and in members of a Chinese family.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3247172 | PMC |
Invest Ophthalmol Vis Sci
January 2025
Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China.
Purpose: To investigate potential modes of programmed cell death in the lens epithelial cells (LECs) of patients with early age-related cortical cataract (ARCC) and to explore early-stage intervention strategies.
Methods: Anterior lens capsules were collected from early ARCC patients for comprehensive analysis. Ultrastructural examination of LECs was performed using transmission electron microscopy.
Crystallin proteins serve as both essential structural and as well as protective components of the ocular lens and are required for the transparency and light refraction properties of the organ. The mouse lens crystallin proteome is represented by αA-, αB-, βA1-, βA2-, βA3-, βA4-, βB1-, βB2-, βB3-, γA-, γB-, γC-, γD-, γE, γF-, γN-, and γS-crystallin proteins encoded by 16 genes. Their mutations are responsible for lens opacification and early onset cataract formation.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
Cataracts remain the leading cause of visual impairment worldwide, yet the underlying molecular mechanisms, particularly in age-related cataracts (ARCs), are not fully understood. The Notch signaling pathway, known for its critical role in various degenerative diseases, may also contribute to ARC pathogenesis, although its specific involvement is unclear. This study investigates the role of Notch signaling in regulating ferroptosis in lens epithelial cells (LECs) and its impact on ARC progression.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Singapore Eye Research Institute, Singapore.
Purpose: To investigate the aqueous proteomics and metabolomics in low-energy and high-energy femtosecond laser-assisted cataract surgery (FLACS).
Methods: In this prospective observational study, 72 patients were randomized to 3 groups: low-energy FLACS, high-energy FLACS, and conventional phacoemulsification (controls). Aqueous was collected after femtosecond laser treatment or at the beginning of surgery (controls).
Biomolecules
December 2024
LABRMN, Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico.
Cataracts are diseases characterized by the opacity of the ocular lens and the subsequent deterioration of vision. Metal ions are one of the factors that have been reported to induce crystallin aggregation. For HγS crystallin, several equivalent ratios of Cu(II) promote protein aggregation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!