Aims: Pronounced trabeculation is presented in both left ventricular non-compaction (LVNC) and dilated cardiomyopathy (DCM), which sometimes makes the differentiation difficult. We hypothesized that echocardiographic deformation analysis would help to differentiate these two cardiomyopathies.

Methods And Results: We investigated 15 patients with LVNC (9 males; 42 ± 9 years), 15 age- and gender-matched DCM patients, and 15 healthy controls. The echocardiographic diagnosis of LVNC was confirmed by magnetic resonance imaging. In all subjects standard echocardiography and tissue Doppler imaging (TDI) to study regional LV deformation were carried out. No statistical difference was observed in standard echocardiographic parameters between LVNC and DCM patients. Compared with controls, both patient groups showed significantly reduced annular displacements (septal: controls 14 ± 2 mm vs. DCM 6 ± 3 mm vs. LVNC 7 ± 3 mm) and reduced strain values of the LV segments. A characteristic deformation pattern with significantly higher values in the LV base compared with the apex was observed in patients with LVNC by deformation measurements with TDI. This gradient was found particularly in the lateral and inferior wall but spared the anteroseptal wall; non-compaction was not found in basal segments throughout the ventricle and also spared the anteroseptal midventricular wall. In DCM the strain and strain rate values were homogeneously reduced in all LV segments.

Conclusion: A special regional deformation pattern (preserved deformation in basal segments of LVNC) seems to be of major diagnostic help for the definite differential diagnosis of LVNC and DCM.

Download full-text PDF

Source
http://dx.doi.org/10.1093/eurjhf/hfr164DOI Listing

Publication Analysis

Top Keywords

regional deformation
12
left ventricular
8
ventricular non-compaction
8
dilated cardiomyopathy
8
lvnc
8
patients lvnc
8
dcm patients
8
diagnosis lvnc
8
lvnc dcm
8
deformation pattern
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!