The mammalian cerebral cortex is characterized in vivo by irregular spontaneous activity, but how this ongoing dynamics affects signal processing and learning remains unknown. The associative plasticity rules demonstrated in vitro, mostly in silent networks, are based on the detection of correlations between presynaptic and postsynaptic activity and hence are sensitive to spontaneous activity and spurious correlations. Therefore, they cannot operate in realistic network states. Here, we present a new class of spike-timing-dependent plasticity learning rules with local floating plasticity thresholds, the slow dynamics of which account for metaplasticity. This novel algorithm is shown to both correctly predict homeostasis in synaptic weights and solve the problem of asymptotic stable learning in noisy states. It is shown to naturally encompass many other known types of learning rule, unifying them into a single coherent framework. The mixed presynaptic and postsynaptic dependency of the floating plasticity threshold is justified by a cascade of known molecular pathways, which leads to experimentally testable predictions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6621309 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.2496-11.2012 | DOI Listing |
Am J Hum Genet
January 2025
Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
Each human genome has approximately 5 million DNA variants. Even for complete loss-of-function variants causing inherited, monogenic diseases, current understanding based on gene-specific molecular function does not adequately predict variability observed between people with identical mutations or fluctuating disease trajectories. We present a parallel paradigm for loss-of-function variants based on broader consequences to the cell when aberrant polypeptide chains of amino acids are translated from mutant RNA to generate mutated proteins.
View Article and Find Full Text PDFBioinspir Biomim
January 2025
Chongqing Jiaotong University, No. 66, Xuefu Avenue, Nanan District, Chongqing City, Chongqing, Chongqing, 400074, CHINA.
The study of fish swimming behaviours and locomotion mechanisms holds significant scientific and engineering value. With the rapid advancements in artificial intelligence, a new method combining deep reinforcement learning (DRL) with computational fluid dynamics (CFD) has emerged and been applied to simulate the autonomous behavior of higher organisms like fish. However, the scale of this cross-disciplinary method is directly affected by the efficiency of the DRL model.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstraße 7, 91058 Erlangen, Germany.
Emerging photovoltaics for outer space applications are one of the many examples where radiation hard molecular semiconductors are essential. However, due to a lack of general design principles, their resilience against extra-terrestrial high-energy radiation can currently not be predicted. In this work, the discovery of radiation hard materials is accelerated by combining the strengths of high-throughput, lab automation and machine learning.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Cornell University, Ithaca, NY, USA.
Background: Spatial disorientation is an early symptom of Alzheimer's disease (AD). The hippocampus creates a cognitive map, wherein cells form firing fields in specific locations within an environment, termed place cells. Critically, place cells remain stable across visits to an environment, but change their firing rate or field location in a different environment.
View Article and Find Full Text PDFBackground: Mild functional difficulties begin in mild cognitive impairment (MCI) and precede functional disability, but people with MCI generally perform at ceiling on performance-based tests of everyday function. This study examined whether inefficient reaching, touching, and extra movements (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!