The rat mitochondrial single strand DNA binding protein (SSB) P16 was purified to apparent homogeneity by elution from single strand DNA agarose with ethidium bromide. Each monomer of P16 contains two tryptophan residues, and the intrinsic fluorescence from these residues is quenched upon binding to single strand polynucleotides. From fluorescence quench titrations of ligand to fixed amounts of DNA lattice, a binding site size of 8 or 9 nucleotides per P16 monomer was found. Measurement of the affinity of P16 for isolated sites by titration with either oligo(dT)8 or 5'-dephosphorylated oligo(dT)8 indicated values on the order of 10(7) M-1. P16 exhibited a binding preference for single strand DNA, poly(dT), and poly(dC) in comparison to double strand DNA, poly(U), or poly[d(A-T)]. Although it was not possible to show that P16 destabilizes double helical DNA or even poly[d(A-T)], binding of P16 does inhibit the process of renaturation as shown by inhibition of duplex formation between poly(dA) and poly(dT). The binding of saturating amounts of P16 to single strand poly(dT).oligo(dA)50 template-primers enhanced approximately 10-fold the activity of both the homologous mitochondrial DNA polymerase and the Escherichia coli DNA polymerase I Klenow fragment. However, the mitochondrial DNA primase was nearly completely inhibited by the saturation of the poly(dT) template with P16. Amino-terminal sequence analysis of P16 and a protease-insensitive, DNA binding domain (Mr approximately 6000) revealed that the DNA binding domain residues, at least in part, in the amino-terminal third of the P16 molecule. Furthermore, the amino-terminal sequence was found to be strikingly similar to that of the Xenopus laevis mtSSB-1 and to a lesser extent similar to E. coli SSB and E. coli F sex factor SSB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0003-9861(90)90094-f | DOI Listing |
Nucleic Acids Res
January 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
Achieving targeted hypermutation of specific genomic sequences without affecting other regions remains a key challenge in continuous evolution. To address this, we evolved a T7 RNA polymerase (RNAP) mutant that synthesizes single-stranded DNA (ssDNA) instead of RNA in vivo, while still exclusively recognizing the T7 promoter. By increasing the error rate of the T7 RNAP mutant, it generates mutated ssDNA that recombines with homologous sequences in the genome, leading to targeted genomic hypermutation.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Single-Molecule and Cell Mechanobiology Laboratory, Daejeon, 34141, South Korea.
Helicase is a nucleic acid motor that catalyses the unwinding of double-stranded (ds) RNA and DNA via ATP hydrolysis. Helicases can act either as a nucleic acid motor that unwinds its ds substrates or as a chaperone that alters the stability of its substrates, but the two activities have not yet been reported to act simultaneously. Here, we used single-molecule techniques to unravel the synergistic coordination of helicase and chaperone activities, and found that the severe acute respiratory syndrome coronavirus helicase (nsp13) is capable of two modes of action: (i) binding of nsp13 in tandem with the fork junction of the substrate mechanically unwinds the substrate by an ATP-driven synchronous power stroke; and (ii) free nsp13, which is not bound to the substrate but complexed with ADP in solution, destabilizes the substrate through collisions between transient binding and unbinding events with unprecedented melting capability.
View Article and Find Full Text PDFIndian J Occup Environ Med
December 2024
Viral Research and Diagnostic Laboratory (VRDL), Government Medical College, Patiala, Punjab, India.
Pesticides induce oxidative DNA damage and genotoxic effects such as DNA single-strand breaks (SSBs), double-strand breaks (DSBs), DNA adducts, chromosomal aberrations, and enhanced sister chromatid exchanges. Such DNA damage can be repaired by DNA repair mechanisms. In humans, single nucleotide polymorphisms (SNPs) are present in DNA repair genes involved in base excision repair (BER) (, and nucleotide excision repair (NER) (, , , and ), and double-strand break repair (DSBR) ( and ).
View Article and Find Full Text PDFThe detection of mercury ions (Hg) is crucial due to its harmful effects on health and environment. In this article, what we believe to be a novel dual-mode optical fiber sensor incorporating surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS) is proposed for ultra-trace Hg detection. The sensing probe comprises gold (Au)/graphene oxide (GO) composite membrane structure and Au nanospheres (AuNPs), which are connected via double-stranded DNA.
View Article and Find Full Text PDFRNA
January 2025
Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
Neisseria meningitidis minimal ProQ is a global RNA binding protein belonging to the family of FinO-domain proteins. The N. meningitidis ProQ consists only of the FinO domain accompanied by short N- and C-terminal extensions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!