We present here the Energetic pharmacophore model representing complementary features of the 1,2,3,4-tetrahydropyrimidine for selective cyclooxygenase-2 (COX-2) inhibition. For the development of pharmacophore hypothesis, a total of 43 previously reported compounds were docked on active site of COX-2 enzyme. The generated pharmacophore features were ranked using energetic terms of Glide XP docking for 1,2,3,4-tetrahydropyrimidine scaffold to optimize its structure requirement for COX-2 inhibition. The thirty new 4,5,6-triphenyl-1,2,3,4-tetrahydropyrimidine derivatives were synthesized and assessed for selective COX-2 inhibitory activity. Two compounds 4B1 and 4B11 were found to be potent and selective COX-2 inhibitors. The molecular docking studies revealed that the newly synthesized compounds can be docked into COX-2 binding site and also provide the molecular basis for their activity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10822-011-9540-zDOI Listing

Publication Analysis

Top Keywords

energetic pharmacophore
8
selective cyclooxygenase-2
8
cox-2 inhibition
8
compounds docked
8
selective cox-2
8
cox-2
6
development energetic
4
pharmacophore
4
pharmacophore designing
4
designing 1234-tetrahydropyrimidine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!