An exact analytical solution is obtained for the scattering of electromagnetic waves from a plane wave with arbitrary directions of propagation and polarization by an aggregate of interacting homogeneous uniaxial anisotropic spheres with parallel primary optical axes. The expansion coefficients of a plane wave with arbitrary directions of propagation and polarization, for both TM and TE modes, are derived in terms of spherical vector wave functions. The effects of the incident angle α and the polarization angle β on the radar cross sections (RCSs) of several types of collective uniaxial anisotropic spheres are numerically analyzed in detail. The characteristics of the forward and backward RCSs in relation to the incident wavelength are also numerically studied. Selected results on the forward and backward RCSs of several types of square arrays of SiO₂ spheres illuminated by a plane wave with different incident angles are described. The accuracy of the expansion coefficients of the incident fields is verified by comparing them with the results obtained from references when the plane wave is degenerated to a z-propagating and x- or y-polarized plane wave. The validity of the theory is also confirmed by comparing the numerical results with those provided by a CST simulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.29.000022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!