AI Article Synopsis

  • - The study investigates the effects of chronic inhibition of NR2A- and NR2B-containing NMDARs on inhibitory circuits, particularly focusing on GABAergic neurotransmission in dentate granule cells and interneurons, an area that has been less explored compared to excitatory circuits.
  • - Treatment with the NR2B-selective antagonist Ro25,6981 significantly reduced the frequency of spontaneous inhibitory postsynaptic currents (sIPSC) in both cell types, indicating a decrease in action potential-dependent GABA release, while chronic treatment with NR2A-prefering antagonist NVP-AAM077 or non-subunit-selective D-APV had minimal effects.
  • - The findings suggest that the reduction in sIPSC

Article Abstract

Numerous studies have documented the effects of chronic N-methyl-D-aspartate receptor (NMDAR) blockade on excitatory circuits, but the effects on inhibitory circuitry are not well studied. NR2A- and NR2B-containing NMDARs play differential roles in physiological processes, but the consequences of chronic NR2A- or NR2B-containing NMDAR inhibition on glutamatergic and GABAergic neurotransmission are unknown. We investigated altered GABAergic neurotransmission in dentate granule cells and interneurons following chronic treatment with the NR2B-selective antagonist, Ro25,6981, the NR2A-prefering antagonist, NVP-AAM077, or the non-subunit-selective NMDAR antagonist, D-APV, in organotypic hippocampal slice cultures. Electrophysiological recordings revealed large reductions in spontaneous inhibitory postsynaptic current (sIPSC) frequency in both granule cells and interneurons following chronic Ro25,6981 treatment, which was associated with minimally altered sIPSC amplitude, miniature inhibitory postsynaptic current (mIPSC) frequency, and mIPSC amplitude, suggesting diminished action potential-dependent GABA release. Chronic NVP-AAM077 or D-APV treatment had little effect on these measures. Reduced sIPSC frequency did not arise from downregulated GABA(A)R, altered excitatory or inhibitory drive to interneurons, altered interneuron membrane properties, increased failure rate, decreased action potential-dependent release probability, or mGluR/GABA(B) receptor modulation of GABA release. However, chronic Ro25,6981-mediated reductions in sIPSC frequency were occluded by the K+ channel blockers, dendrotoxin, margatoxin, and agitoxin, but not dendrotoxin-K or XE991. Immunohistochemistry also showed increased Kv1.2, Kv1.3, and Kv1.6 in the dentate molecular layer following chronic Ro25,6981 treatment. Our findings suggest that increased Kv1 channel expression/function contributed to diminished action potential-dependent GABA release following chronic NR2B-containing NMDAR inhibition and that these Kv1 channels may be heteromeric complexes containing Kv1.2, Kv1.3, and Kv1.6.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3327840PMC
http://dx.doi.org/10.1038/npp.2011.320DOI Listing

Publication Analysis

Top Keywords

sipsc frequency
16
nr2b-containing nmdar
12
action potential-dependent
12
gaba release
12
release chronic
12
chronic
9
increased kv1
8
kv1 channel
8
nr2a- nr2b-containing
8
nmdar inhibition
8

Similar Publications

Dopaminergic modulation of propofol-induced activation in VLPO neurons: the role of D1 receptors in sleep-promoting neural circuits.

Front Neurosci

January 2025

The Key Laboratory of Anesthesia and Organ Protection, The Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China.

Background: The ventrolateral preoptic nucleus (VLPO) is a crucial regulator of sleep, and its neurons are implicated in both sleep-wake regulation and anesthesia-induced loss of consciousness. Propofol (PRO), a widely used intravenous anesthetic, modulates the activity of VLPO neurons, but the underlying mechanisms, particularly the role of dopaminergic receptors, remain unclear.

Objective: This study aimed to investigate the effects of PRO on NA (-) neurons in the VLPO and to determine the involvement of D1 and D2 dopaminergic receptors in mediating these effects.

View Article and Find Full Text PDF

Alcohol binge drinking has a multitude of effects on CNS function, including changes in inflammatory cytokines such as IL-6 and IL-1β that may contribute to mood fluctuations associated with the intoxication-withdrawal cycle. Widely throughout the brain, including the amygdala, IL-6 mRNA is enhanced during intoxication, whereas IL-1β is initially suppressed during alcohol intoxication, with increased expression seen shortly after ethanol clearance, during acute hangover. Furthermore, induction of neuroimmune genes appears to be muted during adolescence in the amygdala, suggesting a broader functional immaturity of the adolescent neuroimmune system in structures involved in negative affect associated with ethanol exposure.

View Article and Find Full Text PDF

Cannabinoid receptor-1 (CB1R) signaling in the dorsal striatum regulates the shift from flexible to habitual behavior in instrumental outcome devaluation. Based on prior work establishing individual, sex, and experience-dependent differences in Pavlovian behaviors, we predicted a role for dorsomedial striatum (DMS) CB1R signaling in driving rigid responding in Pavlovian autoshaping and outcome devaluation. We trained male and female Long Evans rats in Pavlovian Lever Autoshaping (PLA).

View Article and Find Full Text PDF

Parvalbumin-positive (PV+) GABAergic interneurons in the dentate gyrus provide powerful perisomatic inhibition of dentate granule cells (DGCs) to prevent overexcitation and maintain the stability of dentate gyrus circuits. Most dentate PV+ interneurons survive status epilepticus, but surviving PV+ interneuron mediated inhibition is compromised in the dentate gyrus shortly after status epilepticus, contributing to epileptogenesis in temporal lobe epilepsy. It is uncertain whether the impaired activity of dentate PV+ interneurons recovers at later times or if it continues for months following status epilepticus.

View Article and Find Full Text PDF

Prenatal Exposure to MAM Impairs mPFC and Hippocampal Inhibitory Function in Mice during Adolescence and Adulthood.

eNeuro

November 2024

South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, China

Neurodevelopmental abnormalities are considered to be one of the important causes of schizophrenia. The offspring of methylazoxymethanol acetate (MAM)-exposed mice are recognized for the dysregulation of neurodevelopment and are well-characterized with schizophrenia-like phenotypes. However, the inhibition-related properties of the medial prefrontal cortex (mPFC) and hippocampus throughout adolescence and adulthood have not been systematically elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!