Objective: To evaluate the imaging of cytoplasmic movements in human oocytes as a potential method to monitor the pattern of Ca(2+) oscillations during activation.
Design: Test of a laboratory technique.
Setting: University medical school research laboratory.
Patient(s): Donated unfertilized human oocytes from intracytoplasmic sperm injection (ICSI) cycles.
Intervention(s): Microinjection of oocytes with phospholipase C (PLC) zeta (ζ) cRNA and a Ca(2+)-sensitive fluorescent dye.
Main Outcome Measure(s): Simultaneous detection of oocyte cytoplasmic movements using particle image velocimetry (PIV) and of Ca(2+) oscillations using a Ca(2+)-sensitive fluorescent dye.
Result(s): Microinjection of PLCζ cRNA into human oocytes that had failed to fertilize after ICSI resulted in the appearance of prolonged Ca(2+) oscillations. Each transient Ca(2+) concentration change was accompanied by a small coordinated movement of the cytoplasm that could be detected using PIV analysis.
Conclusion(s): The occurrence and frequency of cytoplasmic Ca(2+) oscillations, a critical parameter in activating human zygotes, can be monitored by PIV analysis of cytoplasmic movements. This simple method provides a novel, noninvasive approach to determine in real time the occurrence and frequency of Ca(2+) oscillations in human zygotes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3334266 | PMC |
http://dx.doi.org/10.1016/j.fertnstert.2011.12.013 | DOI Listing |
Front Mol Biosci
December 2024
Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom.
Aims: Mutations in the cardiac ryanodine receptor (RyR2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). This study investigates the underlying molecular mechanisms for CPVT mutations within the RyR2 N-terminus domain (NTD).
Methods And Results: We consulted the high-resolution RyR2 structure in both open and closed configuration to identify mutations G357S/R407I and A77T, which lie within the NTD intra- and inter-subunit interface with the Core Solenoid (CSol), respectively.
Sleep Adv
December 2024
Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan.
Study Objectives: Astrocytes change their intracellular calcium (Ca) concentration during sleep/wakefulness states in mice. Furthermore, the Ca dynamics in astrocytes vary depending on the brain region. However, it remains unclear whether alterations in astrocyte activity can affect sleep-wake states and cortical oscillations in a brain region-dependent manner.
View Article and Find Full Text PDFFunction (Oxf)
December 2024
Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Korea.
During retinal visual processing, rod bipolar cells (RBC) transfer scotopic signals from rods to AII amacrine cells as second-order neurons. Elucidation of the RBC's excitation/inhibition is essential for understanding the visual signal transmission. Excitation mechanisms via mGluR6 and voltage-gated Ca2+ channels in the RBCs and GABAergic inhibitory synaptic inputs have been studied in previous studies.
View Article and Find Full Text PDFCogn Neurodyn
December 2024
School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710119 People's Republic of China.
The accumulation of amyloid peptide is assumed to be one of the main causes of Alzheimer's disease . There is increasing evidence that astrocytes are the primary targets of A. A can cause abnormal synaptic glutamate, aberrant extrasynaptic glutamate, and astrocytic calcium dysregulation through astrocyte glutamate transporters facing the synaptic cleft (GLT-syn), astrocyte glutamate transporters facing the extrasynaptic space (GLT-ess), metabotropic glutamate receptors in astrocytes (mGluR), N-methyl-D-aspartate receptors in astrocytes (NMDAR), and glutamatergic gliotransmitter release (Glio-Rel).
View Article and Find Full Text PDFJ Physiol
December 2024
University of Exeter Medical School, Hatherly Labs, Exeter, Devon, UK.
The pituitary gland produces and secretes a variety of hormones that are essential to life, such as for the regulation of growth and development, metabolism, reproduction, and the stress response. This is achieved through an intricate signalling interplay between the brain and peripheral feedback signals that shape pituitary cell excitability by regulating the ion channel properties of these cells. In addition, endocrine anterior pituitary cells spontaneously fire action potentials to regulate the intracellular calcium ([Ca]) level, an essential signalling conduit for hormonal secretion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!