Ferrate treatment for inactivation of bacterial community in municipal secondary effluent.

Bioresour Technol

Cooperative Research Center for Environmental Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary.

Published: March 2012

This paper demonstrates the effect of ferrate [Fe(VI)-compound], an environmental friendly multi-purpose reagent, in municipal secondary effluent treatment. The purpose was to study the inactivation capability of ferrate and for the first time to compare the effect and efficiency of Fe(VI) with the widely used disinfectant, chlorine gas on the indigenous bacterial community in the case of secondary effluents. The most probable number technique (MPN) was applied for the determination of cultivable heterotrophic bacterial abundance and terminal restriction fragment length polymorphism (T-RFLP) analysis for comparing bacterial communities. The study demonstrated that (i) ferrate and chlorine had different effect on the total bacterial community of secondary effluents, (ii) low ferrate dose [5 mg L(-1) Fe(VI)] was sufficient for >99.9% reduction of indigenous bacteria, and (iii) a similar dosage was also effective in the inactivation of chlorine-resistant bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2011.12.053DOI Listing

Publication Analysis

Top Keywords

bacterial community
12
municipal secondary
8
secondary effluent
8
secondary effluents
8
ferrate
5
bacterial
5
ferrate treatment
4
treatment inactivation
4
inactivation bacterial
4
community municipal
4

Similar Publications

Microbial Communities in Agave Fermentations Vary by Local Biogeographic Regions.

Environ Microbiol Rep

February 2025

Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Mexico.

The production of traditional agave spirits in Mexico, such as mezcal, involves a process that uses environmental microorganisms to ferment the cooked must from agave plants. By analysing these microorganisms, researchers can understand the dynamics of microbial communities at the interface of natural and human-associated environments. This study involved 16S and ITS amplicon sequencing of 99 fermentation tanks from 42 distilleries across Mexico.

View Article and Find Full Text PDF

Imbalance of oral microbiome homeostasis: the relationship between microbiota and the occurrence of dental caries.

BMC Microbiol

January 2025

State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.

Background: Streptococcus mutans is recognized as a key pathogen responsible for the development of dental caries. With the advancement of research on dental caries, the understanding of its pathogenic mechanism has gradually shifted from the theory of a single pathogenic bacterium to the theory of oral microecological imbalance. Acidogenic and aciduric microbial species are also recognized to participate in the initiation and progression of dental caries.

View Article and Find Full Text PDF

Background: Wastewater systems are usually considered antibiotic resistance hubs connecting human society and the natural environment. Antibiotic usage can increase the abundance of both ARGs (antibiotic resistance genes) and MGEs (mobile gene elements). Understanding the transcriptomic profiles of ARGs and MGEs remains a major research goal.

View Article and Find Full Text PDF

Metabarcoding for the Monitoring of the Microbiome and Parasitome of Medically Important Mosquito Species in Two Urban and Semi-urban Areas of South Korea.

Curr Microbiol

January 2025

Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea.

Interactions between microbial communities and the host can modulate mosquito biology, including vector competence. Therefore, future vector biocontrol measures will utilize these interactions and require extensive monitoring of the mosquito microbiome. Metabarcoding strategies will be useful for conducting vector monitoring on a large scale.

View Article and Find Full Text PDF

Clarithromycin, a common antibiotic found in domestic wastewater, persists even after treatment and can transfer to soils when treated wastewater (TWW) is used for irrigation. This residual antibiotic may exert selection pressure, promoting the spread of antibiotic resistance. While Predicted No Effect Concentrations (PNECs) are used in liquid media to predict resistance risks, PNEC values for soils, especially for clarithromycin, are lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!