Despite the current progress in high-throughput, dense genome scans, a major portion of complex traits' heritability still remains unexplained, a phenomenon commonly termed "missing heritability." The negligence of analytical approaches accounting for gene-gene interaction effects, such as statistical epistasis, is probably central to this phenomenon. Here we performed a comprehensive two-way SNP interaction analysis of human episodic memory, which is a heritable complex trait, and focused on 120 genes known to show differential, memory-related expression patterns in rat hippocampus. Functional magnetic resonance imaging was also used to capture genotype-dependent differences in memory-related brain activity. A significant, episodic memory-related interaction between two markers located in potassium channel genes (KCNB2 and KCNH5) was observed (P(nominal combined)=0.000001). The epistatic interaction was robust, as it was significant in a screening (P(nominal)=0.0000012) and in a replication sample (P(nominal)=0.01). Finally, we found genotype-dependent activity differences in the parahippocampal gyrus (P(nominal)=0.001) supporting the behavioral genetics finding. Our results demonstrate the importance of analytical approaches that go beyond single marker statistics of complex traits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244442PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0029337PLOS

Publication Analysis

Top Keywords

statistical epistasis
8
analytical approaches
8
epistasis functional
4
functional brain
4
brain imaging
4
imaging support
4
support role
4
role voltage-gated
4
voltage-gated potassium
4
potassium channels
4

Similar Publications

Genomic selection can enhance the rate of genetic gain of cane and sucrose yield in sugarcane (Saccharum L.), an important industrial crop worldwide. We assessed the predictive ability (PA) for six traits, such as theoretical recoverable sugar (TRS), number of stalks (NS), stalk weight (SW), cane yield (CY), sugar yield (SY), and fiber content (Fiber) using 20,451 single nucleotide polymorphisms (SNPs) with 22 statistical models based on the genomic estimated breeding values of 567 genotypes within and across five stages of the Louisiana sugarcane breeding program.

View Article and Find Full Text PDF

Review on GPU accelerated methods for genome-wide SNP-SNP interactions.

Mol Genet Genomics

December 2024

Department of Plant Sciences, North Dakota State University, Fargo, 58108, USA.

Detecting genome-wide SNP-SNP interactions (epistasis) efficiently is essential to harnessing the vast data now available from modern biobanks. With millions of SNPs and genetic information from hundreds of thousands of individuals, researchers are positioned to uncover new insights into complex disease pathways. However, this data scale brings significant computational and statistical challenges.

View Article and Find Full Text PDF

Background: Epistasis, the phenomenon where the effect of one gene (or variant) is masked or modified by one or more other genes, significantly contributes to the phenotypic variance of complex traits. Traditionally, epistasis has been modeled using the Cartesian epistatic model, a multiplicative approach based on standard statistical regression. However, a recent study investigating epistasis in obesity-related traits has identified potential limitations of the Cartesian epistatic model, revealing that it likely only detects a fraction of the genetic interactions occurring in natural systems.

View Article and Find Full Text PDF

Genome-wide epistasis analysis reveals significant epistatic signals associated with Parkinson's disease risk.

Brain

December 2024

Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia 30100, Spain.

Article Synopsis
  • Researchers have advanced understanding of Parkinson's disease genetics through genome-wide association studies (GWAS) but have found that many genetic factors still contribute to its heritability, potentially due to interactions between variants (epistasis).
  • A new screening method, VARI3, was developed to investigate these interactions using data from numerous cohorts, successfully identifying notable variant interactions in genes like SNCA, MAPT, and WNT3.
  • The study demonstrated that these epistatic signals were present across different ethnic backgrounds, including European and Native American ancestries, and linked to important biological functions related to Parkinson's disease risk.
View Article and Find Full Text PDF

Initially introduced in 1909 by William Bateson, classic epistasis (genetic variant interaction) refers to the phenomenon that one variant prevents another variant from a different locus from manifesting its effects. The potential effects of genetic variant interactions on complex diseases have been recognized for the past decades. Moreover, It has been studied and demonstrated that leveraging the combined SNP effects within the genetic block can significantly increase calculation power, reducing background noise, ultimately leading to novel epistasis discovery that the single SNP statistical epistasis study might overlook.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!