Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: High fat diet-induced hyperglycemia and palmitate-stimulated apoptosis was prevented by specific inhibition of protein kinase C delta (PKCδ) in β-cells. To understand the role of PKCδ in more detail the impact of changes in PKCδ activity on proliferation and survival of insulin-secreting cells was analyzed under stress-free conditions.
Methodology And Principal Findings: Using genetic and pharmacological approaches, the effect of reduced and increased PKCδ activity on proliferation, apoptosis and cell cycle regulation of insulin secreting cells was examined. Proteins were analyzed by Western blotting and by confocal laser scanning microscopy. Increased expression of wild type PKCδ (PKCδWT) significantly stimulated proliferation of INS-1E cells with concomitant reduced expression and cytosolic retraction of the cell cycle inhibitor p21(Cip1/WAF1). This nuclear extrusion was mediated by PKCδ-dependent phosphorylation of p21(Cip1/WAF1) at Ser146. In kinase dead PKCδ (PKCδKN) overexpressing cells and after inhibition of endogenous PKCδ activity by rottlerin or RNA interference phosphorylation of p21(Cip1/WAF1) was reduced, which favored its nuclear accumulation and apoptotic cell death of INS-1E cells. Human and mouse islet cells express p21(Cip1/WAF1) with strong nuclear accumulation, while in islet cells of PKCδWT transgenic mice the inhibitor resides cytosolic.
Conclusions And Significance: These observations disclose PKCδ as negative regulator of p21(Cip1/WAF1), which facilitates proliferation of insulin secreting cells under stress-free conditions and suggest that additional stress-induced changes push PKCδ into its known pro-apoptotic role.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3246440 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028828 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!