The Hippo (Hpo) signaling pathway controls organ size by regulating the balance between cell proliferation and apoptosis. Although the Hpo function is conserved, little is known about the mechanism of how its kinase activity is regulated. Based on structural information, we performed mutation-function analysis and provided in vitro and in vivo evidence that Hpo activation requires proper dimerization of its N-terminal kinase domain as well as the C-terminal SARAH domain. Hpo carrying point mutation M242E can still dimerize, yet the dimers formed between intermolecular kinase domains were altered in conformation. As a result, autophosphorylation of Hpo at Thr-195 was blocked, and its kinase activity was abolished. In contrast, Hpo carrying I634D, a single mutation introduced in the Hpo C-terminal SARAH domain, disrupted the dimerization of the SARAH domain, leading to reduced Hippo activity. We also find that the Hpo C-terminal half contains two nuclear export signals that promote cytoplasmic localization and activity of Hpo. Taken together, our results suggest that dimerization and nucleocytoplasmic translocation of Hpo are crucial for its biological function and indicate that a proper dimer conformation of the kinase domain is essential for Hpo autophosphorylation and kinase activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3285349 | PMC |
http://dx.doi.org/10.1074/jbc.M111.310334 | DOI Listing |
Rheumatology (Oxford)
January 2025
Nephrology Center and Department of Rheumatology, Toranomon Hospital, Tokyo, Japan.
Objectives: To evaluate the efficacy and safety of first-line targeted synthetic disease-modifying anti-rheumatic drugs (tsDMARDs) in patients with rheumatoid arthritis (RA) and chronic kidney disease (CKD).
Methods: This retrospective cohort study included 216 patients with RA prescribed their first tsDMARDs at two hospitals between 2013 and 2022. Dose reduction and contraindication guidelines for tsDMARDs according to kidney function were followed.
Mol Biol Rep
January 2025
Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
Telomerase, constituted by the dynamic duo of telomerase reverse transcriptase (TERT), the catalytic entity, and an integral RNA component (TERC), is predominantly suppressed in differentiated human cells due to postnatal transcriptional repression of the TERT gene. Dysregulation of telomerase significantly contributes to cancer development via telomere-dependent and independent mechanisms. Telomerase activity is often elevated in advanced cancers, with TERT reactivation and upregulation of TERC observed in early tumorigenesis.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA.
Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece.
Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.
Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.
Front Biosci (Landmark Ed)
January 2025
Department of Cardiology, Affiliated Hospital of Jiangnan University, 214122 Wuxi, Jiangsu, China.
Background: Myocardial ischemia-reperfusion (I/R) injury refers to cell damage that occurs as a consequence of the restoration of blood circulation following reperfusion therapy for cardiovascular diseases, and it is a primary cause of myocardial infarction. The search for nove therapeutic targets in the context of I/R injury is currently a highly active area of research. p70 ribosomal S6 kinase (S6K1) plays an important role in I/R induced necrosis, although the specific mechanisms remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!