Quantification of mtDNA mutation heteroplasmy (ARMS qPCR).

Methods Mol Biol

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.

Published: April 2012

Pathogenic mitochondrial DNA (mtDNA) mutations are usually present in heteroplasmic forms that vary in concentration among different tissues. Manifestation of clinical phenotypes depends on the degree of mtDNA mutation heteroplasmy (mutation load) in affected tissues. It is therefore important to quantify the degree of mutation heteroplasmy in various tissues. In this chapter, we outline the design of allele refractory mutation system (ARMS)-based quantitative PCR (qPCR) analysis of common mtDNA point mutations, a cost-effective and sensitive single-step method to simultaneously detect and quantify heteroplasmic mtDNA point mutations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-61779-504-6_21DOI Listing

Publication Analysis

Top Keywords

mutation heteroplasmy
12
mtdna mutation
8
mtdna point
8
point mutations
8
mutation
5
quantification mtdna
4
heteroplasmy arms
4
arms qpcr
4
qpcr pathogenic
4
pathogenic mitochondrial
4

Similar Publications

Mitochondrial diseases, caused by mutations in either nuclear or mitochondrial DNA (mtDNA), currently have limited treatment options. For mtDNA mutations, reducing mutant-to-wild-type mtDNA ratio (heteroplasmy shift) is a promising therapeutic option, though current approaches face significant challenges. Previous research has shown that severe mitochondrial dysfunction triggers an adaptive nuclear epigenetic response, characterized by changes in DNA methylation, which does not occur or is less important when mitochondrial impairment is subtle.

View Article and Find Full Text PDF

This study presents a comprehensive analysis of mitochondrial DNA (mtDNA) variations in dogs diagnosed with primary and recurrent tumours, employing Oxford Nanopore Technologies (ONT) for sequencing. Our investigation focused on mtDNA extracted from blood and tumour tissues of three dogs, aiming to pinpoint polymorphisms, mutations, and heteroplasmy levels that could influence mitochondrial function in cancer pathogenesis. Notably, we observed the presence of mutations in the D-loop region, especially in the VNTR region, which may be crucial for mitochondrial replication, transcription, and genome stability, suggesting its potential role in cancer progression.

View Article and Find Full Text PDF

Evaluation of the MDM-score system for screening mitochondrial diabetes mellitus in newly diagnosed diabetes patients: a multi-center cohort study in China.

Front Endocrinol (Lausanne)

January 2025

Department of Endocrinology and Metabolism, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, Urumqi, Xinjiang, China.

Objective: To evaluate the performance of MDM-score system in screening for mitochondrial diabetes mellitus (MDM) with m.3243A>G mutation in newly diagnosed diabetes.

Methods: From 2015 to 2017, we recruited 5130 newly diagnosed diabetes patients distributed in 46 hospitals in China.

View Article and Find Full Text PDF

Background: Mitochondrial DNA (mtDNA) pathogenic variants have been reported in several solid tumors including ovarian cancer (OC), the most lethal gynecologic malignancy, and raised interest as they potentially induce mitochondrial dysfunction and rewiring of cellular metabolism. Despite advances in recent years, functional characterization of mtDNA variants in cancer and their possible modulation of drug response remain largely uncharted.

Methods: Here, we characterized mtDNA variants in OC patient derived xenografts (PDX) and investigated their impact on cancer cells at multiple levels.

View Article and Find Full Text PDF

The mitochondrial genome (mtDNA) is an important source of inherited extranuclear variation. Clonal increases in mtDNA mutation heteroplasmy have been implicated in aging and disease, although the impact of this shift on cell function is challenging to assess. Reprogramming to pluripotency affects mtDNA mutation heteroplasmy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!