Molecular response to hypericin-induced photodamage.

Curr Med Chem

University of Salzburg, Department of Molecular Biology, Hellbrunnerstr. 34, 5020 Salzburg, Austria.

Published: June 2012

Hypericin (Hyp) is used as a powerful natural photosensitizer in photodynamic therapy (PDT). After selective accumulation in tumor tissue, vessels and matrix, and activated by visible light, it destroys the tumor mainly via generation of reactive oxygen species. After photoactivation, molecular biological mechanisms lead to different cellular endpoints: "biostimulation" (increased proliferation rate), repair of the damage leading to rescue of the cells, autophagy, apoptosis and necrosis. Growth stimulation after low-dose Hyp-PDT seems to be induced via the p38 or JNK survival pathways. Since both pathways are also activated by stress, modification of these pathways may also contribute to rescue mechanisms as well as to damage processing. By increasing PDT doses beyond sublethal damage, stress response pathways are activated such as the ER-stress pathway with disruption of Ca2+ homeostasis and unfolded protein response. This leads either to apoptosis or autophagic cell death, dependent on the availability of Bax/Bak. Apoptosis triggered directly at the mitochondria or by the ER-stress response is executed via the mitochondrial pathway, whereas in some cases, the receptor-mediated pathway is preferred. If the damage is too severe, the cellular energy level low and /or the cytoplasma membrane leaky, cells will die necrotically. The different modes of cellular responses depend mainly on the PDT-protocol, photosensitizer localisation, cellular damage protection and the available intracellular energy.

Download full-text PDF

Source
http://dx.doi.org/10.2174/092986712799034842DOI Listing

Publication Analysis

Top Keywords

pathways activated
8
damage
5
molecular response
4
response hypericin-induced
4
hypericin-induced photodamage
4
photodamage hypericin
4
hypericin hyp
4
hyp powerful
4
powerful natural
4
natural photosensitizer
4

Similar Publications

EZH2 inhibition induces pyroptosis via RHA-mediated S100A9 overexpression in myelodysplastic syndromes.

Exp Hematol Oncol

January 2025

Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Myelodysplastic Syndromes (MDS) represent a group of heterogeneous myeloid clonal diseases derived from aberrant hematopoietic stem/progenitor cells. Enhancer of zeste homolog 2 (EZH2) is an important regulator in gene expression through methyltransferase-dependent or methyltransferase-independent mechanisms. Herein, we found EZH2 inhibition led to MDS cell pyroptosis through RNA Helicase A (RHA) down-regulation induced overexpression of S100A9, a key regulator of inflammasome activation and pyroptosis.

View Article and Find Full Text PDF

Mechanisms and new advances in the efficacy of plant active ingredients in tendon-bone healing.

J Orthop Surg Res

January 2025

The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No.41 Linyin Road, Baotou, Inner Mongolia, 014010, China.

The tendon-bone interface, known as the tenosynovial union or attachment, can be easily damaged by excessive exercise or trauma. Tendon-bone healing is a significant research topic in orthopedics, encompassing various aspects of sports injuries and postoperative recovery. Surgery is the most common treatment; however, it has limited efficacy in promoting tendon-bone healing and carries a risk of postoperative recurrence, necessitating the search for more effective treatments.

View Article and Find Full Text PDF

Overproduction of reactive oxygen species (ROS), elevated synovial inflammation, synovial hyperplasia and fibrosis are the main characteristic of microenvironment in rheumatoid arthritis (RA). Macrophages and fibroblast-like synoviocytes (FLSs) play crucial roles in the progression of RA. Hence, synergistic combination of ROS scavenging, macrophage polarization from pro-inflammatory M1 phenotype towards M2 anti-inflammatory phenotype, and restoring homeostasis of FLSs will provide a promising therapeutic strategy for RA.

View Article and Find Full Text PDF

Background: Osteoporosis (OP), often termed the "silent epidemic," poses a substantial public health burden. Emerging insights into the molecular functions of FBXW4 have spurred interest in its potential roles across various diseases.

Methods: This study explored FBXW4 by integrating DEGs from GEO datasets GSE2208, GSE7158, GSE56815, and GSE35956 with immune-related gene compilations from the ImmPort repository.

View Article and Find Full Text PDF

Background: Dishevelled-associated activator of morphogenesis1 (DAAM1) is a member of the evolutionarily conserved Formin family and plays a significant role in the malignant progression of various human cancers. This study aims to explore the clinical and biological significance of DAAM1 in pancreatic cancer.

Methods: Multiple public datasets and an in-house cohort were utilized to assess the clinical relevance of DAAM1 in pancreatic cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!