Background: Paraoxonase 1 [PON1] is recognized as a protective enzyme against LDL oxidation, and PON1 polymorphism has been described as a factor influencing coronary heart disease [CHD] free survival. As coronary vasoreactivity is a surrogate of future cardiovascular events, we aimed at assessing the respective effect of the PON1 genotype and activity on coronary vasoreactivity in a population of type 2 diabetic patients.
Methods: Nineteen patients with type 2 diabetes mellitus underwent 82Rb cardiac PET/CT to quantify myocardial blood flow [MBF] at rest, during cold pressor testing [CPT], and during adenosine-induced hyperaemia to compute myocardial flow reserve [MFR]. They were allocated according to Q192R and L55M polymorphisms into three groups (wild-type and LM/QR heterozygotes, MM homozygotes, and RR homozygotes) and underwent a measurement of plasmatic PON1 activity. Relations between rest-MBF, stress-MBF, MFR, and MBF response to CPT and PON1 genotypes and PON1 activity were assessed using Spearman's correlation and multivariate linear regression analysis.
Results: Although PON1 activity was significantly associated with PON1 polymorphism (p < 0.0001), there was no significant relation between the PON1 genotypes and the rest-MBF, stress-MBF, or MBF response to CPT (p ≥ 0.33). The PON1 activity significantly correlated with the HDL plasma level (ρ = 0.63, p = 0.005), age (ρ = -0.52, p = 0.027), and MFR (ρ = 0.48, p = 0.044). Moreover, on multivariate analysis, PON1 activity was independently associated with MFR (p = 0.037).
Conclusion: Our study supports an independent association between PON1 activity and MFR. Whether PON1 contributes to promote coronary vasoreactivity through its antioxidant activity remains to be elucidated. This putative mechanism could be the basis of the increased risk of CHD in patients with low PON1 activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3251512 | PMC |
http://dx.doi.org/10.1186/2191-219X-1-27 | DOI Listing |
Cir Cir
January 2025
Department of General Surgery, Antalya Training and Research Hospital, Antalya, Turkey.
Objective: Dysregulation of lipid metabolism can be one of the pathophysiological mechanisms linking high-density lipoprotein cholesterol (HDL-C) dysfunction to obesity. The aim of the study is to show possible changes in lipid metabolism with atherogenic indices in obese patients after sleeve gastrectomy (SG) surgery.
Method: Thirty patients who had SG surgery for obesity were included in the prospective study.
J Psychopharmacol
January 2025
Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
Objective: Therapeutic drug monitoring (TDM) indicators have been suggested to predict overall outcome responses to olanzapine (OLZ) treatments in terms of efficacy and metabolic syndrome. This study aimed to investigate whether paraoxonase-1 (PON-1) activity can be used to predict schizophrenia patient outcomes.
Methods: Schizophrenic patients ( = 50) aged between 20 and 65 years who received OLZ treatment were recruited, and their Positive and Negative Syndrome Scale scores, PON-1 activity, and olanzapine drug levels normalized by dose (OLZ/D) and its metabolite N-desmethyl-olanzapine (DMO), together with biochemical parameters, were determined.
Background: Alopecia areata (AA) is a T-cell-mediated autoimmune disease that significantly impacts patient quality of life. The breakdown of hair follicle immune privilege underlies AA pathogenesis. However, the precise mechanism of this breakdown remains unclear.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2025
Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan; Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. Electronic address:
Introduction: Paraoxonase-1 (PON1) is a crucial esterase in cardiovascular health, closely associated with HDL and known for its antioxidant and anti-inflammatory properties. Reduced PON1 activity has been linked to cardiovascular diseases. Lysophospholipids (LysoPLs), essential for cellular processes and immune responses, are implicated in the pathogenesis of cardiovascular diseases and are bound to lipoproteins, contributing to their diverse effects.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa 227-0033, Japan. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!