Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. The most common CF-causing mutation, ΔF508-CFTR, produces CFTR loss-of-function by impairing its cellular targeting to the plasma membrane and its chloride channel gating. We recently identified cyanoquinolines with both corrector ("Co", normalizing ΔF508-CFTR targeting) and potentiator ("Po", normalizing ΔF508-CFTR channel gating) activities. Here, we synthesized and characterized 24 targeted cyanoquinoline analogues to elucidate the conformational requirements for corrector and potentiator activities. Compounds with potentiator-only, corrector-only, and dual potentiator-corrector activities were found. Molecular modeling studies (conformational search ⇒ force-field lowest energy assessment ⇒ geometry optimization) suggest that (1) a flexible tether and (2) a relatively short bridge between the cyanoquinoline and arylamide moieties are important cyanoquinoline-based CoPo features. Further, these CoPo's may adopt two distinct π-stacking conformations to elicit corrector and potentiator activities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3277286 | PMC |
http://dx.doi.org/10.1021/jm201372q | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!