Background: Microglia are considered a major target for modulating neuroinflammatory and neurodegenerative disease processes. Upon activation, microglia secrete inflammatory mediators that contribute to the resolution or to further enhancement of damage in the central nervous system (CNS). Therefore, it is important to study the intracellular pathways that are involved in the expression of the inflammatory mediators. Particularly, the role of the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and glycogen synthase kinase-3 (GSK-3) pathways in activated microglia is unclear. Thus, in the present study we investigated the role of Akt and its downstream pathways, GSK-3 and mTOR, in lipopolysaccharide (LPS)-activated primary rat microglia by pharmacological inhibition of these pathways in regard to the expression of cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase-1 (mPGES-1) and to the production of prostaglandin (PG) E2 and PGD2.
Findings: We show that inhibition of Akt by the Akt inhibitor X enhanced the production of PGE2 and PGD2 without affecting the expression of COX-2, mPGES-1, mPGES-2 and cytosolic prostaglandin E synthase (cPGES). Moreover, inhibition of GSK-3 reduced the expression of both COX-2 and mPGES-1. In contrast, the mTOR inhibitor rapamycin enhanced both COX-2 and mPGES-1 immunoreactivity and the release of PGE2 and PGD2. Interestingly, NVP-BEZ235, a dual PI3K/mTOR inhibitor, enhanced COX-2 and reduced mPGES-1 immunoreactivity, albeit PGE2 and PGD2 levels were enhanced in LPS-stimulated microglia. However, this compound also increased PGE2 in non-stimulated microglia.
Conclusion: Taken together, we demonstrate that blockade of mTOR and/or PI3K/Akt enhances prostanoid production and that PI3K/Akt, GSK-3 and mTOR differently regulate the expression of mPGES-1 and COX-2 in activated primary microglia. Therefore, these pathways are potential targets for the development of novel strategies to modulate neuroinflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3283507 | PMC |
http://dx.doi.org/10.1186/1742-2094-9-2 | DOI Listing |
Nutrients
December 2024
Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan.
Background: Osteoarthritis (OA) is a chronic condition characterized by joint pain and disability, driven by excessive oxidative stress and inflammatory cytokine production in chondrocytes, resulting in cell death and cartilage matrix breakdown. Our previous study showed that in monosodium iodoacetate (MIA)-induced OA rats, oral administration of heat-killed subsp. 557 (LDL557) could significantly decrease OA progression.
View Article and Find Full Text PDFJ Med Chem
December 2024
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06560 Ankara, Turkey.
Chem Biol Drug Des
October 2024
Institute of Chemistry, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil.
Nutrients
September 2024
Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
Recently, there has been significant exploration into the utilization of food by-products as natural reservoirs of bioactive substances, particularly in the creation of functional foods naturally enriched with antioxidants. peels represent a viable option for formulating enhanced olive oils that contribute to a healthier diet, due to their bioactive compound content. This study aimed to (i) ascertain the compositional characteristics of olive oil (CrOO) and (ii) assess its nutraceutical properties in rats with metabolic disorder induced by 3 weeks of feeding with a high-fat diet (HFD).
View Article and Find Full Text PDFJ Agric Food Chem
October 2024
Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain.
The present study aimed to investigate the effects of ()-(-)-1-isothiocyanato-6-(methylsulfinyl)-hexane [()-6-HITC], the major isothiocyanate present in wasabi, in an model of inflammation using lipopolysaccharide-stimulated murine peritoneal macrophages. ()-6-HITC improved the immune response and mitigated oxidative stress, which involved suppression of reactive oxygen species, nitric oxide, and pro-inflammatory cytokines (IL-1β, IL-6, IL-17, IL-18, and TNF-α) production and downregulation of pro-inflammatory enzymes such as inducible nitric oxide synthase, COX-2, and mPGES-1. In addition, ()-6-HITC was able to activate the Nrf2/HO-1 axis while simultaneously inhibiting key signaling pathways, including JAK2/STAT3, mitogen-activated protein kinases, and canonical and noncanonical inflammasome pathways, orchestrating its potent immunomodulatory effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!