Studies have reported the protective effect of estradiol (E(2)) against neuronal death induced by several insults including oxygen deprivation, mitochondrial toxins and activation of glutamate receptors. Glucose deprivation (GD) is associated with ischemia and hypoglycemia, and to date there is no effective therapeutic agent able to prevent neuronal damage induced by these conditions. In this study, we have investigated the effects of 17β-E(2) and the selective agonists of the alpha (ERα) and beta (ERβ) estrogen receptors, propyl pyrazole triol (PPT) and diarylpropionitrile (DPN), respectively, on neuronal death induced by GD in cultured rat hippocampal neurons. We have also analyzed the expression of both ER isoforms after GD. Results show that GD for 2 and 4 h reduces cell survival by 42 and 55%, respectively. Treatment with 17β-E(2) (10 nM to 10 µM) induces a dose-dependent protective effect that is blocked by ICI 182,780, an ER antagonist, and by 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(-piperidinylethoxy)phenol]-1H'pyrazole dihydrochloride (MPP) and 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol (PHTPP), selective ERα and ERβ antagonists, respectively. The ERα and ERβ agonists PPT and DPN show a similar neuroprotective effect to that of 17β-E(2), but DPN is more efficient. In addition, hippocampal neurons under normal conditions show a higher expression of the ERβ isoform. When exposed to GD during 4 h, the expression of both ER isoforms is increased, while only that of the ERβ isoform significantly increases after 2 h of GD. Results demonstrate that E(2) prevents neuronal death induced by GD through its interaction with ER, although the ERβ isoform might have a predominant role. Results also suggest that GD differentially alters the expression of ERα and ERβ in hippocampal neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000334229DOI Listing

Publication Analysis

Top Keywords

neuronal death
16
death induced
16
hippocampal neurons
16
erα erβ
12
erβ isoform
12
estradiol neuronal
8
glucose deprivation
8
cultured rat
8
rat hippocampal
8
expression isoforms
8

Similar Publications

Background: Neurodegeneration due to neurotoxicity is one of the phenomena in temporal lobe epilepsy. Experimentally, hippocampal excitotoxicity process can occur due to kainic acid exposure, especially in the CA3 area. Neuronal death, astrocyte reactivity and increased calcium also occur in hippocampal excitotoxicity, but few studies have investigated immediate effect after kainic acid exposure.

View Article and Find Full Text PDF

A free calcium ion in the cytosol is essential for many physiological and physical functions. Also, it is known as a second messenger as the quantity of free calcium ions is an essential part of brain signaling. In this work, we have attempted to study calcium signaling in the presence of mitochondria, buffer, and endoplasmic reticulum fluxes.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most frequent form of dementia and represents an increasing global burden, particularly in countries like Indonesia, where the population has begun to age significantly. Current medications, including cholinesterase inhibitors and NMDA receptor antagonists, have modest effects on clinical symptoms in the early to middle stages, but there is no curative treatment available so far despite progress. Activating or repressing epigenetic modifications, including DNA methylation, histone modification and microRNA regulation, appears to play an important role in AD development.

View Article and Find Full Text PDF

Dysfunctions in autophagy, a cellular mechanism for breaking down components within lysosomes, often lead to neurodegeneration. The specific mechanisms underlying neuronal vulnerability due to autophagy dysfunction remain elusive. Here we show that autophagy contributes to cerebellar Purkinje cell (PC) survival by safeguarding their glycolytic activity.

View Article and Find Full Text PDF

CRISPRi-based screens in iAssembloids to elucidate neuron-glia interactions.

Neuron

January 2025

Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA. Electronic address:

The complexity of the human brain makes it challenging to understand the molecular mechanisms underlying brain function. Genome-wide association studies have uncovered variants associated with neurological phenotypes. Single-cell transcriptomics have provided descriptions of changes brain cells undergo during disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!