A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Copper nanoparticle-catalyzed carbon-carbon and carbon-heteroatom bond formation with a greener perspective. | LitMetric

Copper nanoparticle-catalyzed carbon-carbon and carbon-heteroatom bond formation with a greener perspective.

ChemSusChem

Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India.

Published: January 2012

The carbon-carbon and carbon-heteroatom bond formations constitute the backbone of organic synthesis and have been widely used in the synthesis of natural products and useful compounds. Because of growing environmental concern, more attention has been focussed on the development of greener methods. Copper is environment-friendly and comparatively inexpensive. Although the use of copper salts in catalysis has been known since the last century, this area of research has been less explored compared to other metals, such as palladium, magnesium, and zinc. This review highlights the general features of nanoparticles as catalysts with particular reference to copper and the recent developments in the copper(0) nanoparticle-catalyzed C(aryl)-C(aryl/alkynyl), C(aryl)-N, C(aryl)-O, C(aryl)-S, and C(aryl)-Se bond formations and related reactions. The mechanisms of the reactions have been outlined and discussed with respect to the active catalytic species and possible intermediates. The scope, limitations, and green aspects of the reactions have also been highlighted. The convenient methods of preparation of copper nanoparticles and their characterization are described.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201100348DOI Listing

Publication Analysis

Top Keywords

carbon-carbon carbon-heteroatom
8
carbon-heteroatom bond
8
bond formations
8
copper
5
copper nanoparticle-catalyzed
4
nanoparticle-catalyzed carbon-carbon
4
bond formation
4
formation greener
4
greener perspective
4
perspective carbon-carbon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!