AI Article Synopsis

  • The study investigates the effectiveness of nanocoating titanium implants with pectic rhamnogalacturonan-I (RG-I) to enhance their integration with bone (ossointegration).
  • Three types of RG-I derived from apple and lupin were tested for their impact on surface properties and osteoblast responses using specialized laboratory techniques.
  • Results indicated that RG-I coatings improved surface characteristics and stimulated bone matrix formation and mineralization, suggesting RG-I as a potential new option for implant coatings to promote better healing.

Article Abstract

Long-term stability of titanium implants are dependent on a variety of factors. Nanocoating with organic molecules is one of the methods used to improve osseointegration. Therefore, the aim of this study is to evaluate the in vitro effect of nanocoating with pectic rhamnogalacturonan-I (RG-I) on surface properties and osteoblasts response. Three different RG-Is from apple and lupin pectins were modified and coated on amino-functionalized tissue culture polystyrene plates (aminated TCPS). Surface properties were evaluated by scanning electron microscopy, contact angle measurement, atomic force microscopy, and X-ray photoelectron spectroscopy. The effects of nanocoating on proliferation, matrix formation and mineralization, and expression of genes (real-time PCR) related to osteoblast differentiation and activity were tested using human osteoblast-like SaOS-2 cells. It was shown that RG-I coatings affected the surface properties. All three RG-I induced bone matrix formation and mineralization, which was also supported by the finding that gene expression levels of alkaline phosphatase, osteocalcin, and collagen type-1 were increased in cells cultured on the RG-I coated surface, indicating a more differentiated osteoblastic phenotype. This makes RG-I coating a promising and novel candidate for nanocoatings of implants.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.33311DOI Listing

Publication Analysis

Top Keywords

surface properties
16
properties osteoblasts
8
osteoblasts response
8
matrix formation
8
formation mineralization
8
surface
5
rg-i
5
nanocoating
4
nanocoating rhamnogalacturonan-i
4
rhamnogalacturonan-i surface
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!