Objective: Genomic duplications that lead to autism and other human diseases are interesting pathological lesions since the underlying mechanism almost certainly involves dosage sensitive genes. We aim to understand a novel genomic disorder with profound phenotypic consequences, most notably global developmental delay, autism, psychosis, and anorexia nervosa.
Methods: We evaluated the affected individuals, all maternally related, using childhood autism rating scale (CARS) and Vineland Adaptive scales, magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) brain, electroencephalography (EEG), electromyography (EMG), muscle biopsy, high-resolution molecular karyotype arrays, Giemsa banding (G-banding) and fluorescent in situ hybridization (FISH) experiments, mitochondrial DNA (mtDNA) sequencing, X-chromosome inactivation study, global gene expression analysis on Epstein-Barr virus (EBV)-transformed lymphoblasts, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR).
Results: We have identified a novel Xq12-q13.3 duplication in an extended family. Clinically normal mothers were completely skewed in favor of the normal chromosome X. Global transcriptional profiling of affected individuals and controls revealed significant alterations of genes and pathways in a pattern consistent with previous microarray studies of autism spectrum disorder patients. Moreover, expression analysis revealed copy number-dependent increased messenger RNA (mRNA) levels in affected patients compared to control individuals. A subset of differentially expressed genes was validated using qRT-PCR.
Interpretation: Xq12-q13.3 duplication is a novel global developmental delay and autism-predisposing chromosomal aberration; pathogenesis of which may be mediated by increased dosage of genes contained in the duplication, including NLGN3, OPHN1, AR, EFNB1, TAF1, GJB1, and MED12.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ana.22673 | DOI Listing |
Nature
January 2025
Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
The abundance and sequence of satellite DNA at and around centromeres is evolving rapidly despite the highly conserved and essential process through which the centromere directs chromosome inheritance. The impact of such rapid evolution is unclear. Here we find that sequence-dependent DNA shape dictates packaging of pericentromeric satellites in female meiosis through a conserved DNA-shape-recognizing chromatin architectural protein, high mobility group AT-hook 1 (HMGA1).
View Article and Find Full Text PDFZhonghua Yi Xue Yi Chuan Xue Za Zhi
January 2025
Department of Obstetrics and Gynecology, the Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.
Objective: To explore the genetic characteristics of a Chinese pedigree with rare mosaic 11q partial duplication and its pathogenetic mechanisms.
Methods: A pedigree which underwent prenatal diagnosis at Wenzhou Central Hospital between September 25, 2015 and November 30, 2023 was selected for the study. Clinical data were collected from the pedigree.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi
January 2025
Department of Neurology, the Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, Hunan 410007, China.
Objective: To explore the clinical manifestations and genetic characteristics of a child with Leukoencephalopathy with ataxia (LKPAT) caused by a CLCN2 gene variant.
Methods: A retrospective analysis was conducted on the clinical data of a child admitted to Hunan Children's Hospital in June 2024 due to "intermittent convulsions for 13 days". Peripheral blood samples were collected from the child and his parents for whole exome sequencing, followed by Sanger sequencing validation and pathogenicity analysis of candidate variants.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!