The effects of electrospun TSF nanofiber diameter and alignment on neuronal differentiation of human embryonic stem cells.

J Biomed Mater Res A

Department of Cell Biology, Medical College of Soochow University, Jiangsu Key Laboratory of Stem Cell Research, Ren Ai Road 199, Suzhou Industrial Park, Suzhou 215123, China.

Published: March 2012

Although transplantation of human embryonic stem cells (hESCs)-derived neural precursors (NPs) has been demonstrated with some success for nervous repair in small animal model, control of the survival, and directional differentiation of these cells is still challenging. Meanwhile, the notion that using suitable scaffolding materials to control the growth and differentiation of grafted hESC-derived NPs raises the hope for better clinical nervous repair. In this study, we cultured hESC-derived NPs on Tussah silk fibroin (TSF)-scaffold of different diameter (i.e., 400 and 800 nm) and orientation (i.e., random and aligned) to analyze the effect of fiber diameter and alignment on the cell viability, neuronal differentiation, and neurite outgrowth of hESC-derived NPs. The results show that TSF-scaffold supports the survival, migration, and differentiation of hESC-derived NPs. Aligned TSF-scaffold significantly promotes the neuronal differentiation and neurite outgrowth of hESC-derived neurons compared with random TSF-scaffold. Moreover, on aligned 400 nm fibers cell viability, neuronal differentiation and neurite outgrowth are greater than that on aligned 800 nm fibers. Together, these results demonstrate that aligned 400 nm TSF-scaffold is more suitable for the development of hESC-derived NPs, which shed light on optimization of the therapeutic potential of hESCs to be employed for neural regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.33291DOI Listing

Publication Analysis

Top Keywords

hesc-derived nps
20
neuronal differentiation
16
differentiation neurite
12
neurite outgrowth
12
diameter alignment
8
human embryonic
8
embryonic stem
8
stem cells
8
nervous repair
8
cell viability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!