The Δ(16) structure as a vitamin D analog enhanced vitamin D receptor (VDR) binding affinity and induced significant cell differentiation, whereas its relative calcemic activity was reduced compared to 1α,25-dihydroxyvitamin D(3) (1α,25(OH)(2)D(3)). Methodologies available to introduce a double bond at C16-C17 of the D-ring on the seco-steroidal skeleton were limited; therefore, a new synthetic strategy was developed to obtain not only the Δ(16) structure, but also a new C15-functional group. Since C15-functionalization was unprecedented in vitamin D analog studies, the hybrid structure of Δ(16) and the C15-OH group at the D-ring may provide important information on the structure-activity relationship with vitamin D analogs. The synthesized 16-ene-2α-methyl-1α,15α,25-trihydroxyvitamin D(3) showed almost 3-times higher VDR binding affinity and an equipotent level of osteocalcin promoter transactivation activity in human osteosarcoma cells as compared to 1α,25(OH)(2)D(3).

Download full-text PDF

Source

Publication Analysis

Top Keywords

vitamin analog
12
Δ16 structure
8
vdr binding
8
binding affinity
8
vitamin
5
c15-functionalized 16-ene-1α25-dihydroxyvitamin
4
16-ene-1α25-dihydroxyvitamin vitamin
4
analog unique
4
unique biological
4
biological properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!