A high-throughput 32D(L858R/T790M) cell-based assay to identify inhibitors of the L858R/T790M mutant epidermal growth factor receptor (EGFR) pathway was established. After screening, ten hits from among 60,000 compounds in our in-house compound library were initially identified. In the secondary assays, one hit, 1-[2-(decyloxy)-2-oxoethyl]-3-methyl-2-[(4-methylphenoxy) methyl]-1H-benzimidazol-3-ium, was confirmed to directly inhibit the kinase activity of recombinant L858R/T790M EGFR and the phosphorylation of EGFR-L858R/T790M in gefitinib-resistant H1975 cells. Thus, this high-throughput assay system may be useful for identifying novel inhibitors which suppress mutant EGFR-T790M signalling and for overcoming T790M-mediated acquired resistance for future anticancer drug discovery.
Download full-text PDF |
Source |
---|
Acta Pharmacol Sin
January 2025
State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China.
Histone lysine-specific demethylase 1 (LSD1) is overexpressed in various solid and hematological tumors, suggesting its potential as a therapeutic target, but there are currently no LSD1 inhibitors available on the market. In this study we employed a computer-guided approach to identify novel LSD1/EGFR dual inhibitors as a potential therapeutic agent for non-small cell lung cancer. Through a multi-stage virtual screening approach, we found L-1 and L-6, two compounds with unique scaffolds that effectively inhibit LSD1 with IC values of 6.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Department of Pharmaceutical Chemistry, Division of Computer-Aided Drug Design, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India.
A series of 2,4-disubstituted pyrimidine derivatives bearing 5-substituted-1,3,4 thidiazole were devised and synthesized based on the binding mode of the approved drug Osimertinib with the ATP competitive site of EGFR-L858R/T790M in order to increase selectivity towards double mutant EGFR and potent antitumor activity. Their cellular bioactivity and corresponding enzyme inhibition were studied, and it was revealed that several compounds had significant biological activity and selectivity when compared to the control compounds. One of the most promising compound 8, substantially suppressed the proliferation of H1975 cells and showed significant inhibition of double mutant EGFR-L858R/T790M TK with IC values of 0.
View Article and Find Full Text PDFJ Med Chem
December 2024
Schrödinger Inc., New York, New York 10036, United States.
Despite the success of first, second, and third generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) for non-small cell lung cancer with classical EGFR mutations (L858R or Exon 19 deletions), disease progression occurs due to the acquisition of T790M and C797S resistance. Herein, we report a physics-based computationally driven lead identification approach that identified structurally unique imidazo[3.2-]pyrazoles as reversible and wild-type-sparing EGFR TKIs of classical mutations bearing both T790M and C797S.
View Article and Find Full Text PDFBioorg Chem
January 2025
Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China. Electronic address:
Epidermal growth factor receptor (EGFR) is a starring target for the treatment of non-small cell lung cancer (NSCLC). EGFR tyrosine kinase inhibitors (EGFR-TKIs) have been used to treat NSCLC patients with EGFR-activating mutations. However, most patients invariably develop resistance to these agents due to the occurrence of novel mutations at the EGFR kinase domain.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
The treatment of patients with nonsmall cell lung cancer (NSCLC) using epidermal growth factor receptor (EGFR) inhibitors is complicated by drug-sensitive activating L858R/T790M and L858R/T790M/C797S mutations. To overcome drug resistance, a series of furopyridine (PD) compounds were virtually screened to identify potent EGFR inhibitors using molecular docking and molecular dynamics (MD) simulations based on the solvated interaction energy (SIE) method. Several PD compounds identified from virtual screening demonstrated the potential to suppress both wild-type and mutant forms of EGFR, with IC values in the nanomolar range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!