Denoising sparse images from GRAPPA using the nullspace method.

Magn Reson Med

Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA.

Published: October 2012

To accelerate magnetic resonance imaging using uniformly undersampled (nonrandom) parallel imaging beyond what is achievable with generalized autocalibrating partially parallel acquisitions (GRAPPA) alone, the DEnoising of Sparse Images from GRAPPA using the Nullspace method is developed. The trade-off between denoising and smoothing the GRAPPA solution is studied for different levels of acceleration. Several brain images reconstructed from uniformly undersampled k-space data using DEnoising of Sparse Images from GRAPPA using the Nullspace method are compared against reconstructions using existing methods in terms of difference images (a qualitative measure), peak-signal-to-noise ratio, and noise amplification (g-factors) as measured using the pseudo-multiple replica method. Effects of smoothing, including contrast loss, are studied in synthetic phantom data. In the experiments presented, the contrast loss and spatial resolution are competitive with existing methods. Results for several brain images demonstrate significant improvements over GRAPPA at high acceleration factors in denoising performance with limited blurring or smoothing artifacts. In addition, the measured g-factors suggest that DEnoising of Sparse Images from GRAPPA using the Nullspace method mitigates noise amplification better than both GRAPPA and L1 iterative self-consistent parallel imaging reconstruction (the latter limited here by uniform undersampling).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3323741PMC
http://dx.doi.org/10.1002/mrm.24116DOI Listing

Publication Analysis

Top Keywords

denoising sparse
16
sparse images
16
images grappa
16
grappa nullspace
16
nullspace method
16
grappa
8
uniformly undersampled
8
parallel imaging
8
brain images
8
existing methods
8

Similar Publications

Unrolled deep learning for breast cancer detection using limited-view photoacoustic tomography data.

Med Biol Eng Comput

January 2025

Department of Electrical and Communication Engineering, United Arab Emirates University, Asharej, Al Ain, 15551, Abu Dhabi, United Arab Emirates.

Photoacoustic tomography (PAT) has emerged as a promising imaging modality for breast cancer detection, offering unique advantages in visualizing tissue composition without ionizing radiation. However, limited-view scenarios in clinical settings present significant challenges for image reconstruction quality and computational efficiency. This paper introduces novel unrolled deep learning networks based on split Bregman total variation (SBTV) and relaxed basis pursuit alternating direction method of multipliers (rBP-ADMM) algorithms to address these challenges.

View Article and Find Full Text PDF

Mode-informed complex-valued neural processes for matched field processing.

J Acoust Soc Am

January 2025

School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, People's Republic of China.

A complex-valued neural process method, combined with modal depth functions (MDFs) of the ocean waveguide, is proposed to reconstruct the acoustic field. Neural networks are used to describe complex Gaussian processes, modeling the distribution of the acoustic field at different depths. The network parameters are optimized through a meta-learning strategy, preventing overfitting under small sample conditions (sample size equals the number of array elements) and mitigating the slow reconstruction speed of Gaussian processes (GPs), while denoising and interpolating sparsely distributed acoustic field data, generating dense field data for virtual receiver arrays.

View Article and Find Full Text PDF

Data-driven model discovery and model selection for noisy biological systems.

PLoS Comput Biol

January 2025

Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America.

Biological systems exhibit complex dynamics that differential equations can often adeptly represent. Ordinary differential equation models are widespread; until recently their construction has required extensive prior knowledge of the system. Machine learning methods offer alternative means of model construction: differential equation models can be learnt from data via model discovery using sparse identification of nonlinear dynamics (SINDy).

View Article and Find Full Text PDF

The development of optical sensors for label-free quantification of cell parameters has numerous uses in the biomedical arena. However, using current optical probes requires the laborious collection of sufficiently large datasets that can be used to calibrate optical probe signals to true metabolite concentrations. Further, most practitioners find it difficult to confidently adapt black box chemometric models that are difficult to troubleshoot in high-stakes applications such as biopharmaceutical manufacturing.

View Article and Find Full Text PDF

Convergent-Diffusion Denoising Model for multi-scenario CT Image Reconstruction.

Comput Med Imaging Graph

January 2025

The Department of Computer and Data Science, Case Western Reserve University, Cleveland, OH, USA; The Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.

A generic and versatile CT Image Reconstruction (CTIR) scheme can efficiently mitigate imaging noise resulting from inherent physical limitations, substantially bolstering the dependability of CT imaging diagnostics across a wider spectrum of patient cases. Current CTIR techniques often concentrate on distinct areas such as Low-Dose CT denoising (LDCTD), Sparse-View CT reconstruction (SVCTR), and Metal Artifact Reduction (MAR). Nevertheless, due to the intricate nature of multi-scenario CTIR, these techniques frequently narrow their focus to specific tasks, resulting in limited generalization capabilities for diverse scenarios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!