Tissue heating during magnetic resonance measurements is a potential hazard at high-field MRI, and particularly, in the framework of parallel radiofrequency transmission. The heating is directly related to the radiofrequency energy absorbed during an magnetic resonance examination, that is, the specific absorption rate (SAR). SAR is a pivotal parameter in MRI safety regulations, requiring reliable estimation methods. Currently used methods are usually based on models which are neither patient-specific nor taken into account patient position and posture, which typically leads to the need for large safety margins. In this work, a novel approach is presented, which measures local SAR in a patient-specific manner. Using a specific formulation of Maxwell's equations, the local SAR is estimated via postprocessing of the complex transmit sensitivity of the radiofrequency antenna involved. The approximations involved in the proposed method are investigated. The presented approach yields a sufficiently accurate and patient-specific local SAR measurement of the brain within a scan time of less than 5 min.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrm.23322 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!