Chemical species separation with simultaneous estimation of field map and T2* using a k-space formulation.

Magn Reson Med

Department of Electrical Engineering, Pontificia Universidad Catolica de Chile, Santiago, Chile.

Published: August 2012

Chemical species separation techniques in image space are prone to incorporate several distortions. Some of these are signal accentuation in borders and geometrical warping from field inhomogeneity. These errors come from neglecting intraecho time variations. In this work, we present a new approach for chemical species separation in MRI with simultaneous estimation of field map and T2* decay, formulated entirely in k-space. In this approach, the time map is used to model the phase accrual from off-resonance precession and also the amplitude decay due to T2*. Our technique fits the signal model directly in k-space with the acquired data minimizing the l(2)-norm with an interior-point algorithm. Standard two dimensional gradient echo sequences in the thighs and head were used for demonstrating the technique. With this approach, we were able to obtain excellent estimation for the species, the field inhomogeneity, and T2* decay images. The results do not suffer from geometric distortions derived from the chemical shift or the field inhomogeneity. Importantly, as the T2* map is well positioned, the species signal in borders is correctly estimated. Considering intraecho time variations in a complete signal model in k-space for separating species yields superior estimation of the variables of interest when compared to existing methods.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.23237DOI Listing

Publication Analysis

Top Keywords

chemical species
12
species separation
12
field inhomogeneity
12
simultaneous estimation
8
estimation field
8
field map
8
map t2*
8
intraecho time
8
time variations
8
t2* decay
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

MSU, East Lansing, MI, USA.

Background: Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by the accumulation of neurofibrillary tangles (NFTs) which consist primarily of hyperphosphorylated tau protein. Abnormal phosphorylated tau has been considered as a pathogenic species that impairs cellular function and propagates from neuron to neuron. AD affects millions of people around the world, however, there's no effective drug that can prevent or cure the disease to date.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

UCSD, San Diego, CA, USA.

Cerebral beta-amyloid accumulation is the key initiator of Alzheimer's disease (AD) pathology. Most familial early-onset AD mutations in the APP, PSEN1/2 genes increase the ratio of Abeta42:Abeta40, which drives beta-amyloid accumulation in the brain. In 2001, the late Steve Wagner, Maria Kounnas, and I directed an agnostic high-throughput screen for compounds that would reverse the Abeta42:Abeta40, ratio, and discovered the first non-NSAID (second generation) gamma secretase modulators (GSM) at TorreyPines Therapeutics.

View Article and Find Full Text PDF

This report documents complications in false pilchard Harengula clupeola and scad Decapterus macarellus associated with a salinomycin (60 mg kg-1) and amprolium (100 mg kg-1) gel feed treatment, along with prolonged temperature increase, for an Enteromyxum leei outbreak in a salt water, mixed species, public aquarium exhibit. Shortly after administration, a mass mortality event ensued where hundreds of false pilchards and a few scad died. Medicated gel feed was noted within the gastrointestinal tracts of all affected fish.

View Article and Find Full Text PDF

Cisplatin is widely used for the treatment of solid tumors and its antitumor effects are well established. However, a known complication of cisplatin administration is acute kidney injury (AKI). In this study, we examined the role of TEA domain family member 1 (TEAD1) in the pathogenesis of cisplatin-induced AKI.

View Article and Find Full Text PDF

Peroxynitrite (ONOO/ONOOH) is a short-lived but highly reactive species that is formed in the diffusion-controlled reaction between nitric oxide and the superoxide radical anion. It can oxidize certain biomolecules and has been considered as a key cellular oxidant formed under various pathophysiological conditions. It is crucial to selectively detect and quantify ONOO to determine its role in biological processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!