A major component of green tea is (-)-epigallocatechin gallate (EGCG), which has strong antioxidant properties. Here, we investigated the effect of EGCG on neural stem cell (NSC) proliferation around the damaged area following traumatic brain injury (TBI). In this study, male Wistar rats that had access to normal drinking water, or water containing 0.1% (w/v) EGCG, ad libitum received TBI at 10 weeks of age. Immunohistochemistry revealed that the number of nestin-positive cells around the damaged area after TBI in the EGCG treatment group increased significantly compared with the normal water group (P < 0.05). However, the number of 8-hydroxy-2'-deoxyguanosine-, 4-hydroxy-2-nonenal-, single-stranded DNA (ssDNA)-positive cells and the level of peroxidation around the damaged area after TBI significantly decreased in the EGCG treatment group when compared with the water group (P < 0.05). Furthermore, in contrast to the EGCG group, almost all ssDNA-positive cells in the water group co-localized with NeuN and nestin-staining. Ex vivo studies revealed that spheres could only be isolated from injured brain tissue in the water group at 3 days following TBI. However, in the EGCG group, spheres could be isolated at both 3 and 7 days following TBI. A greater number of spheres could be isolated from the EGCG group, which differentiated into neurons and glia in culture without basic fibroblast growth factor. These results indicate that consumption of water containing EGCG pre- and post-TBI inhibits free radical-induced degradation of NSCs, which have the potential to differentiate into neurons and glia around the area of damage following TBI.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00702-011-0764-9DOI Listing

Publication Analysis

Top Keywords

damaged area
12
neural stem
8
cells damaged
8
traumatic brain
8
brain injury
8
--epigallocatechin-3-gallate increases
4
increases number
4
number neural
4
stem cells
4
area rat
4

Similar Publications

Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.

Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).

View Article and Find Full Text PDF

Climate change has become an emerging topic, leading to widespread damage. However, when considering climate, attention is drawn to various scales, and urban microclimate has emerged as a trending subject due to its direct relevance to human living environments. Among the microclimatic factors, temperature and precipitation are utilized in order to identify trends.

View Article and Find Full Text PDF

Background: Ips typographus (L.), the eight-toothed spruce bark beetle (Coleoptera: Scolytinae), has devastated European Norway spruce (Picea abies) forests in recent years. For the first time, I.

View Article and Find Full Text PDF

Optogenetics has transformed the study of neural circuit function, but limitations in its application to species with large brains, such as non-human primates (NHPs), remain. A major challenge in NHP optogenetics is delivering light to sufficiently large volumes of deep neural tissue with high spatiotemporal precision, without simultaneously affecting superficial tissue. To overcome these limitations, we recently developed and tested in NHP cortex, the Utah Optrode Array (UOA).

View Article and Find Full Text PDF

A comprehensive review of challenges and opportunities for stem cell research in India.

Perspect Clin Res

August 2024

Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, UP, India.

Stem cell research is a major focus for scientific and medical communities worldwide due to the potential for stem cells to restore function lost due to disease, trauma, congenital abnormalities, and aging. Stem cells can repair, replace, or regenerate damaged cells, tissues, or organs, making them an important area of research in regenerative medicine. India is emerging as a prominent hub for the development of stem cell therapy (SCT), and it is important to assess the current state of stem cell research in India and the potential for advancement to promote stem cell-based therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!