In an early stage of the postnatal development of cats, orientation maps mature and spatial frequency selectivity is consolidated. To investigate the time course of orientation map maturation associated with the consolidation of spatial frequency selectivity, we performed optical imaging of intrinsic signals in areas 17 and 18 of cats under the stimulation of drifting square-wave gratings with different orientations and spatial frequencies. First, orientation maps for lower spatial frequencies emerged in the entire part of the lateral gyrus, which includes areas 17 and 18, and then these orientation maps in the posterior part of the lateral gyrus disappeared as orientation maps for higher spatial frequencies matured. Independent of age, an anteroposterior gradient of response strengths from lower to higher spatial frequencies was observed. This indicates that the regional distribution of spatial frequencies is innately determined. The size of iso-orientation domains tended to decrease as the stimulus spatial frequency increased at every age examined. In contrast, orientation representation bias changed with age. In cats younger than 3 months, the cardinal (vertical and horizontal) orientations were represented predominantly over the oblique orientations. However, in young adult cats from 3 to 9 months old, the representation bias switched to predominantly oblique orientations. These age-dependent changes in the orientation representation bias imply that orientation maps continue to elaborate within postnatal 1 year with the consolidation of spatial frequency selectivity. We conclude that both intrinsic and mutual factors lead to the development of orientation maps and spatial frequency selectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1460-9568.2011.07954.x | DOI Listing |
HGG Adv
December 2024
International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México. Electronic address:
Repeated sequences spread throughout the genome play important roles in shaping the structure of chromosomes and facilitating the generation of new genomic variation through structural rearrangements. Several mechanisms of structural variation formation use shared nucleotide similarity between repeated sequences as substrate for ectopic recombination. We performed genome-wide analyses of direct and inverted intrachromosomal repeated sequence pairs with >200bp and >80% sequence identity in three human genome assemblies, GRCh37, GRCh38, and the T2T-CHM13 alternate assembly.
View Article and Find Full Text PDFKN J Cartogr Geogr Inf
December 2024
Department of Neuropsychology, Ruhr-University Bochum, Bochum, Germany.
When using navigation devices the "cognitive map" created in the user's mind is much more fragmented, incomplete and inaccurate, compared to the mental model of space created when reading a conventional printed map. As users become more dependent on digital devices that reduce orientation skills, there is an urgent need to develop more efficient navigation systems that promote orientation skills. This paper proposes to consider brain processes for creating more efficient maps that use a network of optimally located cardinal lines and landmarks organized to support and stabilize the neurocognitive structures in the brain that promote spatial orientation.
View Article and Find Full Text PDFNanoscale
December 2024
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Carrer dels Til·lers, Bellaterra, 08193, Spain.
The nanoscale chiral arrangement in a bicomponent organic material system comprising donor and acceptor small molecules is shown to depend on the thickness of a film that is responsive to chiral light in an optoelectronic device. In this bulk heterojunction, a previously unreported chiral bis(diketopyrrolopyrrole) derivative was combined with an achiral non-fullerene acceptor. The optical activity of the chiral compound is dramatically different in the pure material and the composite, showing how the electron acceptor influences the donor's arrangement compared with the pure molecule.
View Article and Find Full Text PDFDiagnostics (Basel)
November 2024
College of Computer Science and Engineering, Taibah University, Medina 41477, Saudi Arabia.
Background/objectives: In contrast to traditional biometric modalities, such as facial recognition, fingerprints, and iris scans or even DNA, the research orientation towards chest X-ray recognition has been spurred by its remarkable recognition rates. Capturing the intricate anatomical nuances of an individual's skeletal structure, the ribcage of the chest, lungs, and heart, chest X-rays have emerged as a focal point for identification and verification, especially in the forensic field, even in scenarios where the human body damaged or disfigured. Discriminative feature embedding is essential for large-scale image verification, especially in applying chest X-ray radiographs for identity identification and verification.
View Article and Find Full Text PDFCereb Cortex
December 2024
School of Psychological and Cognitive Sciences, Peking University, 5 Yiheyuan Road, Beijing 100871, China.
Hubel and Wiesel's ice-cube model proposed that V1 orientation and ocular dominance functional maps intersect orthogonally to optimize wiring efficiency. Here, we revisited this model and additional arrangements at both cellular and pixel levels in awake macaques using two-photon calcium imaging. The recorded response fields of view were similar in size to hypercolumns, each containing up to 2,000 identified neurons and representing full periods of orientation preferences and ocular dominance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!