Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Human blood platelets (PLTs) contain brain-derived neurotrophic factor (BDNF), a neurotrophin that binds to neurotrophic tropomyosin-related kinase B (TrkB) receptor on central nervous system cells. This binding promotes neural synaptic plasticity and memory and prevents neuronal degeneration. Alterations in BDNF homeostasis are associated with aging and are found in several neurodegenerative conditions such as Alzheimer's, Huntington's, and Parkinson's diseases and multiple sclerosis. We have developed PLT viral inactivation and chromatographic fractionation processes and decided here to identify fractions enriched in BDNF.
Study Design And Methods: PLT concentrates (PCs) were treated by solvent/detergent (S/D), extracted by oil, and subjected to fractionation (C18, sulfopropyl [SP]-Sepharose, diethylaminoethyl [DEAE]-Sepharose, or activated charcoal). BDNF and pro-BDNF were evaluated by enzyme-linked immunosorbent assay, and Western blot. TrkB was studied by Western blot. Tri-n-butyl phosphate (TnBP) was quantified by high-performance liquid chromatography, and Triton X-45 by gas chromatography.
Results: The mean BDNF content of 2.9 ± 0.7 ng/mL in PC was noted to increase to 56.2 ± 2.4 ng/mL after S/D treatment and remained stable during oil extraction. Approximately 70% of the BDNF content was recovered after C18 chromatography. BDNF did not bind to DEAE-Sepharose and was almost completely adsorbed by charcoal. Chromatography on SP-Sepharose yielded a highly enriched 13-kDa mature BDNF fraction that was more than 170-fold purified, with a mean of 137 ± 29.4 ng/mL and 82% chromatographic recovery, devoid of detectable TnBP and Triton X-45. Pro-BDNF and TrkB proteins were not detected in the PLT extracts.
Conclusion: We obtained a S/D-treated, highly enriched mature PLT-derived BDNF fraction that could help unveil the pharmacokinetics, pharmacodynamic, and potential therapeutic applications of the BDNF neurotrophin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1537-2995.2011.03494.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!