AI Article Synopsis

  • This study focuses on improving glucosamine (GlcN) production through microbial cells, specifically using Citrobacter sp. BL-4, which has been shown to produce polyglucosamine.
  • Researchers conducted LC-MS analysis after protein separation to identify proteins involved in acetate metabolism, discovering 280 proteins, of which 188 were related to acetate.
  • Key findings include the up-regulation of acetyl-CoA synthetase and isocitrate lyases in acetate medium, leading to significant changes in metabolic pathways that could enhance GlcN production through targeted metabolic engineering.

Article Abstract

Mass production of glucosamine (GlcN) using microbial cells is a worthy approach to increase added values and keep safety problems in GlcN production process. Prior to set up a microbial cellular platform, this study was to assess acetate metabolism in Citrobacter sp. BL-4 (BL-4) which has produced a polyglucosamine PGB-2. The LC-MS analysis was conducted after protein separation on the 1D-PAGE to accomplish the purpose of this study. 280 proteins were totally identified and 188 proteins were separated as acetate-related proteins in BL-4. Acetate was converted to acetyl-CoA by acetyl-CoA synthetase up-regulated in the acetate medium. The glyoxylate bypass in the acetate medium was up-regulated with over-expression of isocitrate lyases and 2D-PAGE confirmed this differential expression. Using (1)H-NMR analysis, the product of isocitrate lyases, succinate, increased about 15 times in the acetate medium. During acetate metabolism proteins involved in the lipid metabolism and hexosamine biosynthesis were over-expressed in the acetate medium, while proteins involved in TCA cycle, pentose phosphate cycle and purine metabolism were down-regulated. Taken together, the results from the proteomic analysis can be applied to improve GlcN production and to develop metabolic engineering in BL-4.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3248649PMC
http://dx.doi.org/10.7150/ijbs.8.66DOI Listing

Publication Analysis

Top Keywords

acetate medium
16
acetate metabolism
12
proteomic analysis
8
acetate
8
metabolism citrobacter
8
citrobacter bl-4
8
glcn production
8
isocitrate lyases
8
proteins involved
8
metabolism
5

Similar Publications

Low-temperature oxidation of ethanol to acetaldehyde over Mo-based catalysts.

RSC Adv

January 2025

State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences Taiyuan 030001 China

The research and development of the green synthesis route of chemicals has become the focus of research in academia and industry. At present, the highly efficient oxidation of ethanol to acetaldehyde over non-precious metal catalysts under mild conditions is most promising, but remains a big challenge. Herein, the Mo-Sn oxide catalyst was designed to successfully realize low-temperature oxidation of ethanol to acetaldehyde, achieving an acetaldehyde selectivity of 89.

View Article and Find Full Text PDF

Increasing aquaculture production requires high-density farming, which induces stress, necessitating supplements to mitigate its effects and ensure fish health. The aim of this study was to examine how CaNa2EDTA (EDTA) affects the growth, immune response and antioxidant activity in Nile tilapia (Oreochromis niloticus). The fish were raised at three different stocking densities: low (LD = 2.

View Article and Find Full Text PDF

Exploring the impact of sodium acetate on lipid and carotenoid production in .

Prep Biochem Biotechnol

January 2025

Environmental Technology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India.

The study employed batch shake flasks to evaluate the impact of various nitrogen sources, phosphate levels, and sodium acetate (Na-acetate) on the growth and metabolite production. Adding Na-acetate to the medium resulted in significant improvements in critical metabolites. In shake flask experiments, this led to a cell dry weight (CDW) of 1.

View Article and Find Full Text PDF

Glycerol, a by-product of biodiesel production through transesterification, presents an opportunity for biodiesel industries to transform surplus glycerol into high-value chemical products. This study focuses on the development of a series of propyl sulfonic acid functionalized (PrSOH) SBA-15 catalysts, synthesized by direct synthesis of 3-mercaptopropyltrimethoxysilane (MPTMS) and tetraethoxysilane (TEOS) in an acidic medium. The catalysts were evaluated for acetylation of glycerol with acetic acid under conditions optimized through response surface methodology.

View Article and Find Full Text PDF

The present study examined the corrosion protection of aluminium in 1M HCl by deploying expired danacid, with techniques such as gravimetric, electrochemical, and density functional theory (DFT). Inhibitor characterization was executed with Fourier transform infrared (FTIR) spectroscopy and gas chromatography mass spectrometry (GC-MS), which was supplemented by optimization of parameters with response surface methodology. The results of gravimetric study indicates that the inhibition efficiency (IE) rose with rise in danacid concentration and reduced with rise in temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!