"Candidatus Chloracidobacterium thermophilum" is a recently discovered chlorophototroph from the bacterial phylum Acidobacteria, which synthesizes bacteriochlorophyll (BChl) c and chlorosomes like members of the green sulfur bacteria (GSB) and the green filamentous anoxygenic phototrophs (FAPs). The pigments (BChl c homologs and carotenoids), quinones, lipids, and hopanoids of cells and chlorosomes of this new chlorophototroph were characterized in this study. "Ca. Chloracidobacterium thermophilum" methylates its antenna BChls at the C-8(2) and C-12(1) positions like GSB, but these BChls were esterified with a variety of isoprenoid and straight-chain alkyl alcohols as in FAPs. Unlike the chlorosomes of other green bacteria, "Ca. Chloracidobacterium thermophilum" chlorosomes contained two major xanthophyll carotenoids, echinenone and canthaxanthin. These carotenoids may confer enhanced protection against reactive oxygen species and could represent a specific adaptation to the highly oxic natural environment in which "Ca. Chloracidobacterium thermophilum" occurs. Dihydrogenated menaquinone-8 [menaquinone-8(H(2))], which probably acts as a quencher of energy transfer under oxic conditions, was an abundant component of both cells and chlorosomes of "Ca. Chloracidobacterium thermophilum." The betaine lipid diacylglycerylhydroxymethyl-N,N,N-trimethyl-β-alanine, esterified with 13-methyl-tetradecanoic (isopentadecanoic) acid, was a prominent polar lipid in the membranes of both "Ca. Chloracidobacterium thermophilum" cells and chlorosomes. This lipid may represent a specific adaptive response to chronic phosphorus limitation in the mats. Finally, three hopanoids, diploptene, bacteriohopanetetrol, and bacteriohopanetetrol cyclitol ether, which may help to stabilize membranes during diel shifts in pH and other physicochemical conditions in the mats, were detected in the membranes of "Ca. Chloracidobacterium thermophilum."

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3294765PMC
http://dx.doi.org/10.1128/JB.06421-11DOI Listing

Publication Analysis

Top Keywords

chloracidobacterium thermophilum"
32
"ca chloracidobacterium
24
cells chlorosomes
12
carotenoids quinones
8
quinones lipids
8
lipids hopanoids
8
chloracidobacterium
8
"candidatus chloracidobacterium
8
thermophilum"
8
represent specific
8

Similar Publications

Identification of small molecule inhibitors of the Chloracidobacterium thermophilum type IV pilus protein PilB by ensemble virtual screening.

Arch Biochem Biophys

October 2024

Department of Biochemistry, USA; Center for Drug Discovery, USA; Center for Emerging, Zoonotic and Arthropod-borne Pathogens, USA; University Libraries, Virginia Tech, Blacksburg, VA, 24061, USA. Electronic address:

Antivirulence strategy has been explored as an alternative to traditional antibiotic development. The bacterial type IV pilus is a virulence factor involved in host invasion and colonization in many antibiotic resistant pathogens. The PilB ATPase hydrolyzes ATP to drive the assembly of the pilus filament from pilin subunits.

View Article and Find Full Text PDF

What We Are Learning from the Diverse Structures of the Homodimeric Type I Reaction Center-Photosystems of Anoxygenic Phototropic Bacteria.

Biomolecules

March 2024

Department of Molecular Biology and Biochemistry and Rutgers Climate and Energy Institute, Rutgers University, Piscataway, NJ 08854-8082, USA.

A Type I reaction center (RC) (Fe-S type, ferredoxin reducing) is found in several phyla containing anoxygenic phototrophic bacteria. These include the heliobacteria (HB), the green sulfur bacteria (GSB), and the chloracidobacteria (CB), for which high-resolution homodimeric RC-photosystem (PS) structures have recently appeared. The 2.

View Article and Find Full Text PDF

Chlorophylls and bacteriochlorophylls are the primary pigments used by photosynthetic organisms for light harvesting, energy transfer, and electron transfer. Many molecular structures of (bacterio)chlorophyll-containing protein complexes are available, some of which contain mixtures of different (bacterio)chlorophyll types. Differentiating these, which sometimes are structurally similar, is challenging but is required for leveraging structural data to gain functional insight.

View Article and Find Full Text PDF

Photosynthesis converts light energy to chemical energy to fuel life on earth. Light energy is harvested by antenna pigments and transferred to reaction centers (RCs) to drive the electron transfer (ET) reactions. Here, we present cryo-electron microscopy (cryo-EM) structures of two forms of the RC from the microaerophilic Chloracidobacterium thermophilum (CabRC): one containing 10 subunits, including two different cytochromes; and the other possessing two additional subunits, PscB and PscZ.

View Article and Find Full Text PDF

Discovery of Two Inhibitors of the Type IV Pilus Assembly ATPase PilB as Potential Antivirulence Compounds.

Microbiol Spectr

December 2022

Department of Biological Sciences, Virginia Techgrid.438526.e, Blacksburg, Virginia, USA.

With the pressing antibiotic resistance pandemic, antivirulence has been increasingly explored as an alternative strategy against bacterial infections. The bacterial type IV pilus (T4P) is a well-documented virulence factor and an attractive target for small molecules for antivirulence purposes. The PilB ATPase is essential for T4P biogenesis because it catalyzes the assembly of monomeric pilins into the polymeric pilus filament.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!