The sheepshead minnow, Cyprinodon variegatus is a euryhaline fish that inhabits estuaries and coastal marshes where it encounters a wide range of salinities. Many of these areas also have elevated levels of contaminants, creating the potential for toxic ions to interfere with the uptake of ions for osmoregulation. To determine whether the effect of copper on osmoregulatory activity is dependent on the osmotic conditions that individuals have been living at, fish were acclimated for 14 days to 2.5, 10.5 or 18.5 ppt seawater and then exposed to a fixed free cupric ion level (14.6 μM Cu2+) for 6 h. Plasma Na, plasma Cl, wet/dry weight ratio, transepithelial potential difference (TEPD) and branchial Na(+)/K(+)-ATPase activity were determined before and after copper exposure. We also computed Na and Cl equilibrium potentials. Following the salinity acclimation (in fish not yet exposed to copper), fish from the low salinity group (2.5 ppt) had lower TEPD, lower plasma Na levels and higher branchial Na(+)/K(+)-ATPase activity compared to the fish acclimated to higher salinities. No differences in plasma Cl and wet/dry weight ratio were detected. Copper exposure caused a significant decrease in plasma Na levels and Na(+)/K(+)-ATPase activity and an increase in wet/dry weight ratio, but these changes were limited to the 2.5 ppt salinity group. No significant changes in plasma Cl were detected. Copper treatment resulted in a small decrease in TEPD for all except the lowest salinity acclimation group. A comparison of equilibrium potentials with TEPD showed evidence of active transport of both Na and Cl in 2.5 ppt acclimated fish but not for the 10.5 or the 18.5 ppt acclimated fish. Our results show that effects of copper on osmoregulation are dependent on the fish' past salinity regime, and that these effects tend to be more pronounced for euryhaline fish that have been living under hyposmotic conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2011.12.005 | DOI Listing |
Langmuir
January 2025
Department of Robotics Engineering, Hanyang University, 55 Hanyangdaehak-ro, Ansan, Gyeonggi-do 15588, Republic of Korea.
This study investigates the corrosion inhibition effects of eco-friendly conifer cone extract (CCE) on steel rebars embedded in cement mortar exposed to 3.5% NaCl under alternate wet/dry cycles. CCE concentrations of 0, 0.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
Sepsis-induced acute lung injury (ALI) is a common acute and severe reason of death in the intensive care unit. Although the pathogenesis is complicated and multifactorial, elevated inflammation and oxidative stress are considered as fundamental mechanisms for the progression of ALI. Anemonin is a natural compound with diverse biological properties including anti-inflammatory and anti-oxidative effects.
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
Department of Respiratory and Critical Care Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Background: Acute lung injury (ALI), one of the most severe respiratory system diseases, is prevalent worldwide. Annexin A1 (AnxA1) is an important member of the annexin superfamily, known for its wide range of physiological functions. However, its potential protective effect against lipopolysaccharide (LPS)-induced ALI remains unclear.
View Article and Find Full Text PDFAPMIS
January 2025
Department of Respiratory, Yichang Central People's Hospital, Yichang, China.
The Gram-negative bacterium Klebsiella pneumoniae (K. pneumoniae) is one major causative agent of community- and hospital-acquired pneumonia. Echinacoside (ECH) is a phenylethanoid glycoside isolated from Cistanche deserticola that possesses anti-inflammatory activity.
View Article and Find Full Text PDFSci Rep
December 2024
Geotechnical Institute, TU Bergakademie Freiberg, Freiberg, Germany.
The development of new urban areas necessitates building on increasingly scarce land, often overlaid on weak soil layers. Furthermore, climate change has exacerbated the extent of global arid lands, making it imperative to find sustainable soil stabilization and erosion mitigation methods. Thus, scientists have strived to find a plant-based biopolymer that favors several agricultural waste sources and provides high strength and durability for sustainable soil stabilization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!