During aging there is an increasing imbalance of energy intake and expenditure resulting in obesity, frailty, and metabolic disorders. For decades, research has shown that caloric restriction (CR) and exercise can postpone detrimental aspects of aging. These two interventions invoke a similar physiological signature involving pathways associated with stress responses and mitochondrial homeostasis. Nonetheless, CR is able to delay aging processes that result in an increase of both mean and maximum lifespan, whereas exercise primarily increases healthspan. Due to the strict dietary regime necessary to achieve the beneficial effects of CR, most studies to date have focused on rodents and non-human primates. As a consequence, there is vast interest in the development of compounds such as resveratrol, metformin and rapamycin that would activate the same metabolic- and stress-response pathways induced by these interventions without actually restricting caloric intake. Therefore the scope of this review is to (i) describe the benefits of CR and exercise in healthy individuals, (ii) discuss the role of these interventions in the diseased state, and (iii) examine some of the promising pharmacological alternatives such as CR- and exercise-mimetics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3356510 | PMC |
http://dx.doi.org/10.1016/j.arr.2011.11.005 | DOI Listing |
Int J Mol Sci
December 2024
Department of Cardiology & Preventive Cardiology Outpatient Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece.
The global rise in obesity underscores the need for effective weight management strategies that address individual metabolic and hormonal variability, moving beyond the simplistic "calories in, calories out" model. Body types-ectomorph, mesomorph, and endomorph-provide a framework for understanding the differences in fat storage, muscle development, and energy expenditure, as each type responds uniquely to caloric intake and exercise. Variability in weight outcomes is influenced by factors such as genetic polymorphisms and epigenetic changes in hormonal signaling pathways and metabolic processes, as well as lifestyle factors, including nutrition, exercise, sleep, and stress.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Department of Pneumology, Medical University of Lodz, 90-419 Lodz, Poland.
The aging process significantly impacts lung physiology and is a major risk factor for chronic respiratory diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), asthma, and non-IPF interstitial lung fibrosis. This narrative clinical review explores the molecular and biochemical hallmarks of aging, such as oxidative stress, telomere attrition, genomic instability, epigenetic modifications, proteostasis loss, and impaired macroautophagy, and their roles in lung senescence. Central to this process are senescent cells, which, through the senescence-associated secretory phenotype (SASP), contribute to chronic inflammation and tissue dysfunction.
View Article and Find Full Text PDFNeuroscience
January 2025
Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India; Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, 576 104, Karnataka, India. Electronic address:
Neurodegenerative disorders (NDDs) have been prevalent for more than a decade, and the number of individuals affected per year has increased exponentially. Among these NDDs, Alzheimer's disease, which causes extreme cognitive impairment, and Parkinson's disease, characterized by impairments in motor activity, are the most prevalent. While few treatments are available for clinical practice, they have minimal effects on reversing the neurodegeneration associated with these debilitating diseases.
View Article and Find Full Text PDFObesity is a metabolic disease that is marked by excessive fat accumulation and is objectively defined as a body mass index (BMI) ≥30 kg/m2. Obesity is associated with several other comorbidities, including psoriasis, which is a chronic autoimmune skin disease. Adipocytes produce pro-inflammatory signaling molecules, namely adipokines and classic cytokines, that drive increased inflammation axnd may contribute to the pro-inflammatory pathways driving psoriasis disease pathogenesis.
View Article and Find Full Text PDFDiabetes Obes Metab
January 2025
Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!