Up-regulation of cell adhesion molecules on vascular smooth muscle cells (VSMCs) and leukocyte recruitment to the vascular wall contribute to vascular inflammation and atherosclerosis. Stereocalpin A, a chemical compound of the Antarctic lichen Ramalina terebarata, displays tumoricidal activity against several different tumor cell types. However, other biological activities of stereocalpin A and its molecular mechanisms remain unknown. In this study, our work is directed toward studying the in vitro effects of stereocalpin A on the ability to suppress the expression of adhesion molecules induced by TNF-α in vascular smooth muscle cells. Pretreatment of VSMCs for 2h with stereocalpin A at nontoxic concentrations of 0.1-10 μg/ml inhibited TNF-α-induced adhesion of THP-1 monocytic cells and expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Stereocalpin A reduced TNF-α-induced production of intracellular reactive oxygen species (ROS) and phosphorylation of p38, ERK, JNK and Akt. Stereocalpin A also inhibited NK-κB activation induced by TNF-α. Moreover, stereocalpin A inhibited TNF-α-induced ΙκΒ kinase activation, subsequent degradation of ΙκΒα, and nuclear translocation of NF-κB. Hence, we describe a new anti-inflammatory activity and mechanism of stereocalpin A, owing to the negative regulation of TNF-α-induced adhesion molecule and MCP-1 expression, monocyte adhesion and ROS production in vascular smooth muscle cells. These results suggest that stereocalpin A has the potential to exert a protective effect by modulating inflammation within the atherosclerotic lesion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2011.11.020DOI Listing

Publication Analysis

Top Keywords

vascular smooth
16
smooth muscle
16
muscle cells
16
adhesion molecules
12
stereocalpin
10
adhesion
8
expression adhesion
8
cell adhesion
8
induced tnf-α
8
inhibited tnf-α-induced
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!