Ethnopharmacological Relevance: Flower bud of Tussilago farfara L. is widely used for the treatment of cough, bronchitis and asthmatic disorders in the Traditional Chinese Medicine. However, due to the increasing demands, adulteration with rachis is frequently encountered in the marketplace. No report demonstrated the chemical and pharmacological differences between flower bud and rachis before.
Materials And Methods: The water extracts were orally administrated to mice. Ammonia induced mice coughing model was used to evaluate the antitussive activity. The expectorant activity was evaluated by volume of phenol red in mice's tracheas. Metabolites were identified directly from the crude extracts through 1D- and 2D-NMR spectra. A metabolic profiling carried out by (1)H NMR spectroscopy and multivariate data analysis was applied to crude extracts from flower bud and rachis.
Results: Flower bud significantly lengthened the latent period of cough, decreased cough frequency caused by ammonia and enhanced tracheal phenol red output in expectorant evaluation. Principal component analysis (PCA) yielded good separation between flower bud and rachis, and corresponding loading plot showed that the phenolic compounds, organic acid, sugar, amino acid, terpene and sterol contributed to the discrimination.
Conclusions: These findings provide pharmacological and chemical evidence that only flower bud can be used as the antitussive and expectorant herbal drug. The high concentration of chlorogenic acid, 3,5-dicaffeoylquinic acid, rutin in flower buds may be related with the antitussive and expectorant effects of Flos Farfara. To guarantee the clinical effect, rachis should be picked out before use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2011.12.027 | DOI Listing |
Sci Rep
December 2024
Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, 430062, China.
The photosynthetic mechanism responsible for the differences in yield between different rapeseed varieties remains unclear, and there have been no consensus and definite conclusions about the relationship between photosynthesis and yield. Representation of the whole plant by measuring the photosynthetic performance at a single site may lead to biased results. In this study, we comprehensively analyzed the main photosynthetic organs of four high-yielding rapeseed varieties at the seedling, bud, flowering, and podding stages.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, China.
Background: Early-maturity cotton varieties have the potential to be cultivated in a wider geographical area, extending as far north as 46 °N in China, and confer to address the issue of competition for land between grain and cotton by reducing their whole growth period (WGP). Therefore, it is of great importance to develop cotton varieties with comprehensive early maturity and high yield following investigating the regulatory mechanism underlying early maturity and identifying early maturity-related genes.
Results: In this study, 'SCRC19' and 'SCRC21', two excellent cultivars with significantly different WGP, along with their recombinant inbred lines (RILs) consisting of 150 individuals were re-sequenced, yielding 4,092,677 high-quality single nucleotide polymorphisms (SNPs) and 794 bin markers across 26 chromosomes.
BMC Plant Biol
December 2024
National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070, China.
Background: Thermosensitive male sterility (TMS) is a heritable agronomic trait influenced by the interaction between genotype and environment. The anthers of plants are composed of various specialized cells, each of which plays different roles in plant reproduction. In rapeseed (Brassica napus L.
View Article and Find Full Text PDFEcol Evol
December 2024
Holden Arboretum Kirtland Ohio USA.
As plants continue to respond to global warming with phenological shifts, our understanding of the importance of short-lived heat events and seasonal weather cues has lagged relative to our understanding of plant responses to broad shifts in mean climate conditions. Here, we explore the importance of warmer-than-average days in driving shifts in phenophase duration for spring-flowering woodland herbs across one growing season. We harnessed the combined power of community science and public gardens, engaging more than 30 volunteers to monitor shifts in phenology (documenting movement from one phenophase to the next) for 198 individual plants of 14 species twice per week for the 2023 growing season (March-October) across five botanic gardens in the midwestern and southeastern US.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Forestry, Shenyang Agricultural University, Shenyang 110866, China.
, a notable woody oil tree species, possesses both fruit and timber value. However, the complete heterodichogamous flowering mechanism in this species remains elusive. is a crucial regulator of flower bud development in .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!