Inhaled neutrophil elastase inhibitor reduces oleic acid-induced acute lung injury in rats.

Pulm Pharmacol Ther

Department of Thoracic Surgery, Subei People's Hospital of Jiangsu province, Yangzhou 225001, Jiangsu, PR China.

Published: February 2012

Rationale: Neutrophil elastases (NE) play an important role in the pathogenesis of acute lung injury (ALI). NE activities are significantly increased in serums and lungs of patients or animals with ALI. Intravenous infusion (IV) of Sivelestat, an NE inhibitor, can reduce ALI. Through inhalation, drugs reach lungs directly and in high concentration. We hypothesized that inhaled Sivelestat would alleviate oleic acid (OA)-induced ALI in rats.

Methods: Rats were anesthetized and mechanically ventilated, and then ALI was induced by OA injection. One hour later, the animals were randomized to receive either Sivelestat (3 mg/kg/h) or saline inhalation. The effect of Sivelestat IV (3 mg/kg/h) was also investigated. All animals were ventilated and observed for 6 h.

Results: OA injection increased NE activities in lung tissues and serums. The increase of NE activities in lung tissues and serums markedly reduced by 77%, and 29%, respectively, by the inhalation of Sivelestat; and 53.8%, and 80%, respectively, by Sivelestat IV. Additionally, inhaled Sivelestat resulted in ameliorated lung injury by reducing edema and infiltration of neutrophils in the lung, improved oxygenation and survival.

Conclusions: An over increased NE activity in lungs may play a vital effect in the pathogenesis of OA-induced ALI in rats. Topical application of nebulized Sivelestat, an NE inhibitor, may reduce OA-induced ALI in rats. Sivelestat inhalation can be developed as a novel treatment for ALI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pupt.2011.12.006DOI Listing

Publication Analysis

Top Keywords

lung injury
12
oa-induced ali
12
sivelestat
9
acute lung
8
ali
8
sivelestat inhibitor
8
inhibitor reduce
8
inhaled sivelestat
8
sivelestat 3 mg/kg/h
8
inhalation sivelestat
8

Similar Publications

The P2YR is activated by UDP and UDP glucose and is involved in many human inflammatory diseases. Based on the molecular docking analysis of currently reported P2YR antagonists and the crystallographic overlap study between PPTN and compound , a series of 3-substituted 5-amidobenzoate derivatives were designed, synthesized, and identified as promising P2YR antagonists. The optimal compound (methyl 3-(1-benzo[]imidazol-2-yl)-5-(2-(-tolyl) acetamido)benzoate, IC = 0.

View Article and Find Full Text PDF

Dosimetric Planning Comparison for Left Ventricle Avoidance in Non-small Cell Lung Cancer Radiotherapy.

Cureus

December 2024

Physics and Engineering, London Regional Cancer Program, London, CAN.

Introduction: Radiation may unintentionally injure myocardial tissue, potentially leading to radiation-induced cardiac disease (RICD), with the net benefit of non-small cell lung cancer (NSCLC) radiotherapy (RT) due to the proximity of the lung and heart. RTOG-0617 showed a greater reduction in overall survival (OS) comparing higher doses to standard radiation doses in NSCLC RT. VHeart has been reported as an OS predictor in the first- and fifth-year follow-ups.

View Article and Find Full Text PDF

Dendriform pulmonary ossification in military combat veterans: A case series.

Respir Med Case Rep

December 2024

Division of Environmental and Occupational Health Sciences, National Jewish Health, Denver, CO, USA.

Dendriform pulmonary ossification (DPO) is a rare condition characterized by mature bone formation in the lung. DPO has been linked to various conditions, but little is known about the link between DPO and hazardous airborne exposures. We queried research databases of military personnel evaluated for deployment-related respiratory diseases at two occupational pulmonary medicine clinics (Colorado, USA) for diagnoses of DPO, and summarized demographics, Gulf War military deployment history, medical history, and pulmonary function testing.

View Article and Find Full Text PDF

Effect of the S100A9/AMPK pathway on PM2.5-mediated mouse lung injury.

Iran J Basic Med Sci

January 2025

Graduate school, Shenyang Medical College, Shenyang. No. 146, Huanghe North Street, Shenyang, People's Republic of China.

Objectives: Particulate matter 2.5 (PM2.5), particles with an aerodynamic diameter less than 2.

View Article and Find Full Text PDF

Phenyl arsine oxide (PAO) is a vesicant, similar to Lewisite, a potential chemical warfare agent and an environmental contaminant. PAO-induced skin burns can trigger acute organ injury, including lungs. We have recently demonstrated that PAO burns can also has a delayed toxicity, although the specific mechanism/s remain to be determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!