In addition to antibacterial activity, some macrolide antibiotics, such as azithromycin and clarithromycin, also exhibit anti-inflammatory properties in vitro and in vivo, although the targets and mechanism(s) of action remain unknown. The aim of the present study was to identify protein targets of azithromycin and clarithromycin which could potentially explain their anti-inflammatory effects. Using chemical proteomics approach, based on compound-immobilized affinity chromatography, valosin containing protein (VCP) was identified as a potential target of the macrolides. Validation studies confirmed the interaction of macrolides and VCP and gave some structural characteristics of this interaction. Cell based assays however, including the use of gene silencing and the study of VCP specific cellular functions in J774.A1 (murine macrophage) and IB3-1 (human cystic fibrotic epithelial) cell lines, failed to confirm an association between the binding of the macrolides to VCP and anti-inflammatory effects. These findings suggest the absence of an abundant high affinity protein target and the potential involvement of other biological molecules in the anti-inflammatory activity of macrolides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2011.12.022 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Medical Neuroscience, SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
Ubiquitin-proteasomal degradation of K/Cl cotransporter 2 (KCC2) in the ventral posteromedial nucleus (VPM) has been demonstrated to serve as a common mechanism by which the brain emerges from anesthesia and regains consciousness. Ubiquitin-proteasomal degradation of KCC2 during anesthesia is driven by E3 ligase Fbxl4. However, the mechanism by which ubiquitinated KCC2 is targeted to the proteasome has not been elucidated.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Dept. of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198.
The primary cilium is a crucial signaling organelle that can be generated by most human cells, and impediments to primary ciliogenesis lead to a variety of developmental disorders known as ciliopathies. The removal of the capping protein, CP110, from the mother centriole is a crucial early step that promotes generation of the ciliary vesicle and ciliogenesis. Recent studies have demonstrated that CP110 undergoes polyubiquitination and degradation in the proteosome, but the mechanisms of unfolding and removal from the mother centriole remain unknown.
View Article and Find Full Text PDFDNA Cell Biol
January 2025
Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.
Liver fibrosis, one of the main histological determinants of various chronic liver diseases, currently lacks effective treatment. Hepatic stellate cells (HSCs) are pivotal in the production of extracellular matrix and amplify the fibrogenic response. Inhibiting the activation of HSCs or promoting the senescence of activated HSCs is crucial for the regression of liver fibrosis.
View Article and Find Full Text PDFMol Neurodegener
January 2025
Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 6124 Harry Hines Blvd, Dallas, TX, NS8.334, United States.
Background: Neurodegenerative tauopathies may progress based on seeding by pathological tau assemblies, whereby an aggregate is released from one cell, gains entry to an adjacent or connected cell, and serves as a specific template for its own replication in the cytoplasm. Seeding into the complex cytoplasmic milieu happens within hours, implying the existence of unknown factors that regulate this process.
Methods: We used proximity labeling to identify proteins that control seed amplification within 5 h of seed exposure.
Autophagy
January 2025
Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany.
Lysosomes are the major cellular organelles responsible for nutrient recycling and degradation of cellular material. Maintenance of lysosomal integrity is essential for cellular homeostasis and lysosomal membrane permeabilization (LMP) sensitizes toward cell death. Damaged lysosomes are repaired or degraded via lysophagy, during which glycans, exposed on ruptured lysosomal membranes, are recognized by galectins leading to K48- and K63-linked poly-ubiquitination (poly-Ub) of lysosomal proteins followed by recruitment of the macroautophagic/autophagic machinery and degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!