Background: Paroxysmal dyskinesias (PDs), a clinically and genetically heterogeneous group of episodic movement disorders, include kinesigenic PD (PKD), exercise-induced PD (PED) and non-kinesigenic PD (PNKD). These disorders are all transmitted as autosomal dominant traits with incomplete penetrance. Several PD-related genetic disorders, including PKD and familial infantile convulsions with paroxysmal choreoathetosis (ICCA), mapped to the same region on chromosome 16. Independent genetic studies have recently revealed that PKD can be caused by loss-of-function mutations in the proline-rich transmembrane protein 2 gene (PRRT2). We tested the hypothesis that other forms of PDs are also due to PRRT2 mutations.

Methods/results: The whole genomic region of PRRT2 was sequenced in six Han Chinese families and 15 sporadic cases of PD-related phenotypes. The previously reported mutation, c.649dupC (p.R217Pfs*7), was found in two families with PKD, one family with ICCA, one family with PNKD-like phenotype, and two sporadic cases with PED. In an additional ICCA family, a novel frameshift mutation, c.904dupG (p.D302Gfs*38), was identified. A missense mutation, c.913G→A (p.G305R), and a synonymous substitution, c.1011C→T (p.G337G), were also detected in two sporadic PKD cases.

Conclusion: This study shows that PKD, ICCA and some other PD-related phenotypes are part of the same phenotypic spectrum, caused by mutations in PRRT2. This underscores the complexity of the phenotypic consequences of PRRT2 mutations.

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmedgenet-2011-100653DOI Listing

Publication Analysis

Top Keywords

mutations prrt2
8
paroxysmal dyskinesias
8
sporadic cases
8
pd-related phenotypes
8
icca family
8
pkd
6
prrt2
5
mutations
4
prrt2 result
4
result paroxysmal
4

Similar Publications

Article Synopsis
  • * Research reveals that the CD225 domain harbors a SNARE-like motif, enabling interactions with SNARE proteins, which are essential for membrane fusion; this is particularly important in diseases linked to mutations in these regions, such as neurological disorders.
  • * One member, IFITM3, is shown to interact with SNARE proteins to protect against influenza A virus by disrupting SNARE complex assembly and enhancing endosomal cargo movement to lysosomes, suggesting a key role for SNARE modulation in the diverse functions of CD225
View Article and Find Full Text PDF

Background: Familial hemiplegic migraine (FHM) is a rare subtype of migraine with aura. Variants in calcium voltage-gated channel subunit alpha1 A (CACNA1A), ATPase Na+/K+ transporting subunit alpha 2 (ATP1A2), and sodium voltage-gated channel alpha subunit 1 (SCN1A) genes have a well-established association with the development of FHM. Recent studies suggest that other genes may also have a significant role in the pathogenesis of FHM, including proline-rich transmembrane protein 2 (PRRT2).

View Article and Find Full Text PDF

Since the first presentation at the IV Iberoamerican Academy of Neuropediatrics Congress in 1995, our group has studied self-limited infantile epilepsy (SeLIE), both familial and non-familial, corroborating that they belong to the same entity due to their clinical and electroencephalographic characteristics and excellent prognosis. Associations were found with paroxysmal dyskinesias and migraine, as well as with hemiplegic migraine, episodic ataxia and intellectual disability in atypical cases. Mutations in PRRT2 are the main cause of SeLIE, however, other genes, such as SCN2A, KCNQ2-3 and SCN8A, have been recognized.

View Article and Find Full Text PDF
Article Synopsis
  • Mutations in the PRRT2 gene lead to paroxysmal kinesigenic dyskinesia (PKD), a movement disorder characterized by sudden episodes of dyskinesia triggered by voluntary movements.
  • Research showed that a specific Prrt2 mutation increases dopamine levels in the striatum of mice during stimulation, suggesting a role for the basal ganglia in PKD.
  • L-dopa treatment in mice with the Prrt2 mutation maintained high dopamine levels during repeated stimulation, indicating that dysregulation of dopamine release may contribute to PKD symptoms.
View Article and Find Full Text PDF

Familial hemiplegic migraine.

Handb Clin Neurol

August 2024

Wolfson Sensory, Pain and Regeneration Research Centre (SPaRRC), Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom. Electronic address:

Hemiplegic migraine consists of attacks of migraine with aura that includes reversible motor weakness. It is classified as familial or sporadic depending on the involvement or not of a first or second degree relative. The most described subtypes of familial hemiplegic migraine include FHM1, FHM2, and FHM3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!